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Abstract
We consider the construction of a new class of implicit Second-derivative Runge-Kutta collocation methods

based on intra-step nodal points of Chebyshev-Gauss-Lobatto type, designed for the numerical solution of
systems of initial value equations and show how they have been implemented in an efficient parallel computing
environment. We also discuss the difficulty associated with large systems and how, in this case, one must take
advantage of the second derivative terms in the methods. We involve the introduction of collocation at the two
end points of the integration interval in addition to the Gaussian interior collocation points and also the
introduction of a different class of basic second derivative methods. With these modifications, fewer function
evaluations per step are achieved. The stability properties of these methods are investigated and numerical
results are given for each method.

Keywords: Block hybrid discrete scheme; Continuous scheme; System of equations; Second-derivative Runge-

Kutta methods

Introduction

In this paper, we present a new class of implicit
second-derivative Runge-Kutta (SDRK)
collocation methods for the numerical solution of
initial value problems for systems of ordinary
differential equations (ODES),

Y00= 1) xebo Tl
y(0)= y(x,)

Here

y:[%, T]>%" and f:[x, T]xR* >R

d
assumed to be sufficiently smooth and Yo €N is

the given initial value. Let h>0 be a constant
step-size and define the grid by
X, =X, +nh,n=012,...,N

Nh=T —Xx, and a set of equally spaced points

on the integration interval is defined by
Xo <X; <Xy < X3 <poeiyXpyy =T

where

. The
motivation for studying the implicit second-
derivative Runge-Kutta collocation methods,
particularly, the Gauss—Runge—Kutta collocation
family, is that, collocation at the Gauss points leads
to Runge-Kutta methods which are symmetric and
algebraically stable, Burrage and Butcher (1979). It
was also shown in Yakubu (2003, 2010, 2011,
2015, 2016) and Donald, Skwame and Dominic

(2015) that the only symmetric algebraically stable
collocation methods are those based on Gauss
points. The inclusion of the two end points of the
integration interval as collocation points in addition
to the Gaussian interior collocation points make
them more advantageous, because this minimizes
the number of internal function evaluations
necessary to achieve a given order of accuracy.
Secondly, a substantial increase in efficiency
maybe achieved by the numerical integration
methods which utilize the second-derivative terms.
Thirdly, the relatively good stability properties
enjoyed by these methods make them more
efficient for the numerical integration of system
shaving Jacobians with eigenvalues lying close to
the imaginary axis Adesanya, Fotta and Onsachi
(2016) and Akinfenwa, Abdulganiy, Akinnukawe
,Okunuga and Rufai (2017).

In this paper, we follow the approach of Yakubu,
Kumleng and Markus (2017) to derive a class of
efficient implicit second-derivative Runge-Kutta
collocation methods of high order accuracy, which
converge rapidly to the required solutions. We
hope that our study can stimulate further interest
which will lead to a thorough investigation of the
new class of methods.

A General Approach to the Derivation of the
SDRK Collocation Methods
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In this section, we shall carryout the general form (1). We consider the multistep collocation
derivation of the special class of implicit second- approach of Onumanyi et al., [1994] and now
derivative Runge-Kutta collocation methods for extends to second derivative of the form,

direct integration of initial value problems of the
y(x) = Za (XY +hZﬁ (¥)¥.; +h?* Zy, )V,
: )

We set the sum P =T +S+t d s>0,t>0

are distinct collocation points.
Here &i (%) ’ ;Bj (X) and 7 (X)
assumed to be polynomials of the form
a; (x) = _pZ;aj,mXi hﬂj (X) = pz:)%,hﬂj,mxi h27j (x) = _F)Z;hzﬁ,nlxi

1= i=l i=
We find it convenient tc’) introduce the flollowing pol)’/nomials

1 -1 -1
pO=Yas  o@=3pE Q=3

i= i= i=

which we shall cali the first, second and third 7characteristic polynomials respectively of (2).

1%}

interpolation interval of (2). This means that we employ a special type of Hermite interpolation for y(x).
Substituting (3) into (2) we have

where, I denotes the number of interpolation points used, an

are parameters of the methods which are to be determined. They are

®)

Here, our aim is to utilize not only the interpolation points but also several collocation points on the

r-1 p-1 s—1 p-1 t-1 p-1
i 2
y(x)zzzaj,nlxlymj +h ﬂj |+1X yn+J +h 227/1|+1+X yn+]
j=0i=0 j=0 i=0 j=0 i=0

p-1[r-1
= {Z jl+lyn+j +h2ﬂj |+1yn+] +h 27/]|+lyn+]}

i=0

i=0 @)
writing
p-1
¢| = Z{Zaj |+1yn+j + hZﬁj |+1yn+J + h 271 |+1yn+j}
Equation (4) reduces to
p-1 .
y(x) = ",
i=0 ()

{Cn+j}
Landy,. . and ¥y, _ ' " _ Coy
n+l Yo Yo i are the collocation data of 7 (x) and y*(x) , respectively, on{ ”“}. We

{o:}

we impose the following conditions:

Here
X
n

are collocation points distributed on the step-points array, Yoij is the interpolation data of y(x)

setthesum I +S +t to be equal to P S0 as to be able to determine

a;(i=01--,p-1),

in (2) uniquely.

To fix the parameters

a(xmj): yn+j ) (J 20,1,2,"',r—1) (6)
B'(Crii) = Vre (1=012,--s-1) (7)
7"(Coi) = Vi (j=012,---t-1) (8)

In fact, equations (6) to (8) can be expressed in the matrix-vector form by
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Va =
y ©)
where the P — sduare matrix V, the p —vectors o and y
2 3 4
X, X, X, X,
2 3 4
0 Xn+1 X n+1 Xn+1 Xn_*_1
2 3 4
Xn+s—1 Xn+s—l Xn+s—l Xn+s—l
ve |0 1 2c,  3cx? dex]
2 3
2Cn+s—1 3C’n+s—1 4Cn+5_1
0 2 6c, 12c’
2
o 0 2 6ol

a:(O[O’al’aZ,""ap—l)T’ y:(yn""1yn+r—1’ yra"'"yrlus—l’ yr:"

where D' =(p—1)and D"

n+s-1
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are defined as follows:

5 p-1
Xn Xn
5 p-1
Xn+1 Xn+1
5 p-1
Xn+s—l Xn+s—l (10)
5cx ! D'cP?
4 I~ Pp-2
5Xn+s—1 “' D Cn+s—l
20c? D"cP
3 "y, p-3
2OCnJrs—l -~ D Xss1

"
1 Ynisa

)T

(p _1)( P- 2) represent first and second derivatives respectively. Similar to

the Vandermonde matrix, V in (9) is non-singular. Consequently, equation (9) has the unique solution given by

a=Uy, where U=V

The interpolation polynomial y(x) in (5) can now be expressed explicitly as follows:

r-1 s-1 -, t-1 . T
y(X) = {Zaj,p—lymj + hZﬂj,p—lymj + hzzyj,p—lymj }(1’ X, XZ"'”XP 1)
i=0 =0 j=0

Recall that p+s+t , such that equation (12) becomes

r-1 s—1 t-1
Vi 2 4 2 r+s+t-1 \
y(X) :{zaj,wsﬂ—lym—jhZﬂj,r+s+t—1yn+j +h Zyj,r+s+t—1yn+j}(l1x1x TEERTRA ) '
j=0 j=0 j=0

Expanding (13) fully, gives the continuous scheme;

y(X) = (yn1.“’ yn+r—l, yr,w"'vyr,ws—l’ yr:,!“"y:+t—1)UT(1!X1X2!"'!X

where T denotes transpose of the matrix U in (11) and the vector

In the second-derivative methods, we see that, in
addition to the computation of the f -values at the
internal stages in the standard Runge-Kutta
methods Butcher (2014), the modified methods
involve computing g-values, where g is defined by

Butcher and Hojjati (2005) as y”(x): g(y(x)),

the component number i of g(y(x)) can be written
as,

of.
0.(y0)= £ 0

oy, j(y(x)), i=12,....,m.

(11)
(12)
(13)
r+s+t-1 )T )
(1, X, XZ s Xr+s+t—l)

According to Chan and Tsai (2010) these methods
can be practical if the costs of evaluating g are
comparable to those in evaluating f and can even be
more efficient than the standard Runge-Kutta
methods if the number of function evaluations is
fewer. It is convenient to rewrite the coefficients of
the defining method (13) evaluated at some points
in the block matrix form as

Y=e®y, +h(A®1, F(Y)+h2(A@1, oY) a4
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Yo=Y, + h(bT oI, )F(Y)+ hZ(BT ®1I, ):’(Y )’ v'ectors of quadrature weight§ showing how the
final result depends on the derivatives computed at

the various stages, | is the identity matrix of size
A:la“J A:[A..] equal to the differential equation system to be
where s Ulxs indicate the solved and N is the dimension of the system. Also

dependence of the stages on the derivatives found ® s the Kronecker product of two matrices and e

is the sx1 vector of units. For simplicity, we write

b:[bi] 1 6:[6|J
X x1
at the other stages and v vhare the method in Yakubu (2017) as follows:

Y =y, +hAF(Y )+ h?AG(Y),

(15)
Yoy = Y, +hb F(Y)+h20"G(Y),
and the block vectors in R are defined by
Y FYy) g(Y,)
2 A O AR BTN R
Y, £(Y,) a(v,) |

(16)

1 1

where s denotes stage values used in the computation of the step Yl,YZ ,...,YS .

The coefficients of the Implicit Two-Derivative Runge-Kutta methods can be conveniently represented more
compactly in an extended partitioned Butcher Tableau, of the form

c| Al A
- bT BT
17)
c=|1
where [ ]M is the abscissa vectors which indicates the position within the step of the stage values.
Methods

Third Order Implicit Second-Derivative Runge-Kutta Collocation Method
For the first implicit second-derivative Runge-Kutta collocation method we define & = (X - X, )and consider

the zeros of Legendre polynomial of degree two in the symmetric interval [— 1, 1], which were transformed into

the standard interval [Xn , Xm]. The proposed continuous scheme in (13) can now be written as,

y(X) = ao (X)yn + h[ﬂl (X) 1:n+u + :Bz (X) fn+v ] + h2 [yl (X)g n+v ] (18)
where
2% (X) =1

(%) :%(—9—6\/5+6\/§t+12t—8t2)t

B,(X) =%(—6\/§+3+6\/§t+12t—8t2)t

J2

7,.(X) =§(3—12t +8t?)th?
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Evaluating the continuous scheme y(X)in (18) at the points X = X, X, and X, (where u and v are the

zeros of Legendre polynomial of degree 2) we obtain the implicit second- derivative Runge-Kutta collocation
method of uniformly order 3 with only 2-stages with the following block hybrid discrete scheme:

h h?
=y +—|10f +14f ——A/2
yn+l yn 24[ n+u n+v] 24 gn+v

orderp=3, C4:1—£
6 15

Y=y _%[(ﬁ —10)f,., + (12 —14)fn+v]—2;[(— 2+42)g,.. ]

orderp=3, C, zg—s—%

You = V. +%[(10+ V2)f, +(—14—5\/§)fn+v]—2—28[(2+\/E)gw]
orderp=3, C, =;—33+4£§

Converting the block hybrid discrete scheme to implicit second-derivative Runge-Kutta method and using (16)
we write the method as,

5 7 V2
yn = yn—l + h[ﬁj F1 + h(ﬁj F2 + hZ[MJel (19)

where the internal stage values at the n" step are computed as:

Yl =Yna

1176 2352

245 ﬁJl ( 343 ssgﬁJFz_hz( ‘[@q

Y, = +h ——-—1|F +h
2= o [1176 48

Y, =V,,+h £+—7\/§ F +h -7 52 F, +h? 1V2 G,
24" 48 24 48 24 48

5 7 V2
Y4 = yn71 + h[EjFl + h[Esz + hz{mJGl

with the stage derivatives calculated as follows:
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The implicit second-derivative Runge-Kutta collocation method has order p = 3. Writing the method in an
extended Butcher Tableau (16), we have

2-.J2 | —(-490+49V2) (-686-532/2) O 0  (686-532/2) 0
4 2352 2352 2352
242 (10+742)  ((14+5V2) 0 | 0 (242 0
4 48 48 48
L 10 o 0| o i@ 0
24 24 24
10 14 0 0 -2 0
24 24 24 o -
points in addition to the
A Fourth Order Implicit Second-Derivative Gaussian interior collocation points, obtained in the
Runge-Kutta Collocation Method same manner as in method (18) with the same

Next, as the order of the method being sought for
increases, the algebraic conditions on the
coefficients of the method become increasingly
complicated. However, we consider again the two
end points of the integration interval as collocation

Y(X)= 2, ()3, +h[B, ()T + B, (X sy 1+ 0211 (K)Gy + 72 ()9, ] (19)

where
(213} (X) =

pz(x):O, Legendre polynomial of degree 2.

Thus, the proposed continuous scheme in (13)
takes the
following form:

B(X) = £th(f+1+3t 8t2 + 4t?)

B, (X) = ‘Fh(f 1-3t+8t2 — 4t )t

2
7,(X) = —2—8(6+3\E—12tﬁ—30t —8t2/2 + 48t? —24t3)t

2
7, (X) = 2—8(—6+3ﬁ—12tﬁ+30t +8t7/2 — 487 + 24t° )t

Evaluating the proposed continuous scheme y(X)in (19) at the points X = X, ,;, X,,, and X, ., (where uand v

are the zeros of Legendre polynomial of degree 2) we obtain the block hybrid discrete scheme as follows:

Yaia = Ya + 4L8[24 fn+u + 24 fn+v]+ _[\/_gn+u '\/Egn+v]
Vo = Yo+ 24[(96 30V2)f,., (96—66ﬁ)fn+v]+3h—;1[—(11— a2, +(6-4v2)g,. ]

Yo =y +%[(96+ 663/2)f,., + (96+3oﬁ)fnw]+3h—;[(5+ av2)g,., - 1+ 4v2)g,., ]
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Solving the block hybrid discrete scheme simultaneously, we obtain the higher order implicit second-derivative
Runge-Kutta collocation method written in the formalism of (15) as follows:

Yn = Yot h[ljﬁ + h[lsz + h{ﬁJel - hz{‘@jez (20a)
2 2 48 48

where the internal stage values at the n step are computed as:

Y1 =Yna

VRV S ST S AN (BN R (TS
4 64 4 64 384 96 384 96

Y,=y,,+h 1+& F, +h £+ﬂ F, +h? i+£ G, —h? £+£ G,
4 64 4 64 384 96 384 96

1 1 V2 V2
Y4 = yn—l -+ h[szl =+ h(szZ =+ h2{48JGl - h2(48sz

where the stage derivatives are calculated as follows:

The implicit second-derivative Runge-Kutta collocation method has order p = 4. Writing the method in an
extended Butcher Tableau (16), we have

2.2 | (96-30v2) (96-66v2) O _U1-42)  (5-42) 0
4 384 384 384 384

2442 | (96+66v2) (96+30v2) Q (5+42) 11+4/2) O
4 384 384 384 T 384
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1 1 a 0 V2 -2 0
E 2 48 48
T T 0 2 ] 0
2 2 78 48

Analysis of the Second Derivative Runge-Kutta Collocation Methods
Order, Consistency, Zero-stability and Convergence of SDRKC Methods

With the multistep collocation formula (2) we associate the linear difference operator / defined by
r

Ay(x)h]=>"a; (x)y(x+ jh +hz,8 y'(x+ jh)+h 271 y"(x+ jh) (20b)
j=0

where y(X)is an arbitrary function, contlnuously differentiable on [a, b], following Yakubu (2010), we can
write the terms in (20b) as a Taylor series expansion about the point X to obtain the expression,

A[y(xxh]=Coy(x)+ C,hy () + C,h2y"(x)++++ ChPy P (x) -

Where the constant coefficients Cp, p=0,1 2,...aregiven as follows:
r
=2
j=0
! -
C,=2 ja;
it

r S

Cz :zja]‘ _Zﬂj

=

1S > . :
:e,u[ZJZ“J- —ZZ it —Zh]
=\ _j=0 j=1 j=0

1[G
Cp:pl[;w’i ZJ _IIBJ ijz J]‘p 34,

According to [24], the multlstep collocatlon formula (2) has order p if

Ay(xyh]=0(h*¥)c, =C, =---C, =0,C,,, =0.

is the error constant and Therefore, the order and the error constants for the
two methods constructed are represented in Tablel.

Therefore C

C,.h Py (P45 the principal local truncation

error at the point X, (Chan and Tai [2010]).

Tablel: Order and error constants of SDRK collocation methods

Method Order Error constant
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Method (18) p =3
p=3
p=3

Method (20) p=4
p=4
p=4

C, =7.23830°
C, =-8.597x102
C, =3.7617x107

C, =1.4583x102
C; =1.1193x107?
C, =1.0547x10°?

Definition 1: Yakubu and Kwami (2015) The
implicit second-derivative Runge-Kutta collocation
(18) and (20) are said to be consistent if the order
of the individual method is greater than or equal to

one, that is, if p =>1.

(i) p@)=0and

(i) p'(M) =0, where p(z) and o(z) are respectivdy
the1st and 2nd characterstic polynomiak.

Definition 2:. Yakubu et. al., (2010) The second
derivative Runge-Kutta collocation methods (18)
and ( 20) are said to be zero-stable if the roots

p(1)= det[i A W} =0

i=0

yel T A uTht(r )
= , h=12..
y(n_l) B V y[n]
where
_Y [n] _y [n-1] ] i
1 1
[n] [n-1]
vl :Yz Loy 'Y2 1 f(Y[n])
Y [n] y [n-1]
A
00 1 0 O
A= , = , B=|0
A B 0 u c-u .
Vv
and e =11,....1].

Hence (21 ) takes the form

Satisfies‘/ij‘ <1 j=12,...,k and for those

roots with‘ﬂj‘=1, the multiplicity does not
exceed 2.

Definition 3: Yakubu et al., (2010) The necessary
and sufficient conditions for the SDRK collocation
methods (18) and (20) to be convergent are that
they must be consistent and zero-stable.

Stability regions of the SDRK collocation methods
In this paper stability properties of the methods are
discussed by reformulating the block hybrid
discrete schemes as general linear methods by
Butcher (2014) and Butcher and Hojjati (2005).
Hence, we use the notations introduced by Butcher
and Hojjati (2005), where a general linear method

is represented by a partitioned (S + r)x(s + r)
matrix (containing A,U, B and V),

N (21)
f (Yl[n] )‘ ‘yl[n]
:f (Yz[n])1 yil — _yz[n] ’
f (Ys[n] )_ _yr[n] |

B | u e—u

0, v=(0 0 | \

' 0 0 I-6
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v, it (v, )]
Y, hf(YZW])
v A U7 hify,™)
y," BV |y,
Y, Y,
_yr[n] ] _yr[nfl]

Where r denotes quantities as output from each step
and input to the next step and s denotes stage
values used in the computation of the step

Vi ¥Ys,..., Y. The coefficients of these matrices

A U, B,andV indicate ~ the relationship

between the various numerical quantities that arise
in the computation of stability regions. The
elements of the matrices A, U, B, andV are
substituted into the stability matrix which leads to
the recurrent equation

Y =M (2)y n=123,...,N-1Z = /h

Skwame et al., ADSUJSR, 6(2):288-300, August, 2018

(22)

where the stability matrix

M(z)=V +zB(l —zA)'U

and the stability polynomial of the method can
easily be obtained as follows:

p(n,2)=det(r(A-Uz -Vz?)-B)
The absolute stability region of the method is
defined as

SR:XEC:p(n,Z):1:|77|£1.

Computing the stability functions gives the stability polynomials of the methods, which are plotted to produce
the required graphs of the absolute stability regions of the methods as displayed in Fig. 1.

T

AN e

\\_’ /

Figl: Regions of absolute stability of method (18) and method (20) respectively

Remark: The regions of absolute stability of

methods (18) and (20) are A— Stablesince the
region consists of the complex plane outside the
enclosed figures.

Numerical Results

Preliminary numerical experiments have been
carried out using a constant step size
implementation in Matlab. The test examples are
some systems of ordinary differential equations
written as first order initial value problems. We
solved these systems and compared the obtained
results side by side in Tables.
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Example 1:

We consider a well-known classical system which is a mildly stiff problem composed of two first order
equations,

[y{(x)} _[998+1998 }[yl(x)} [yl(O)}_H
y;(x) ] [-999-1999] y,(x) | y,(0)] [1]
and the exact solutions given by the sum of two decaying exponential components

|:y1(x):| _ |:4-e)< _ 3g~1000x :| or {yl(x) = 4e* _3e71000x

Y, (X) — 2e7* + 3g1000x Y, ()() =24 3e*1000><

and Continuous General Linear methods of Yakubu
(2017) The numerical results obtained are shown in
Table 1, while the region of absolute stability
shown in Fig.1.

The stiffness ratio is R = 1000 and the problem is
solved numerically on the interval [10,100]. We
have solve the problem using the newly derived
Gauss-Radau-Runge-Kutta collocation methods

Table 1: Absolute errors of numerical solutions of example 1 within the interval 10<x<100

X

Error in Method (18)

Error in Method (20)

Error in Yakubu (2010)

Y1 Y2 Y1 Y2 Y1 Y2

100  4.684x10* 4.4075x10° 3.452x10° 4.607x107 4.642x10°° 4.754x107°
20.0  5.558x10° 4.2692 x10°® 4.522x107 2.728x10°® 6.808x10° 0.838x10°
30.0  5.689x10° 2.5522 x10°° 6.344x10® 8.572x10® 5.356x10° 2.078x10°
40.0  3.895x10°® 1.2500 x10°® 4.255x10° 2.029x10°® 3.476x107 3.705x10°
50.0  1.125x107 5.7196 x10°® 3.232x10°° 4.464x10 2.107x10°® 6.173x107
60.0  3.223x10° 2.5080 x107 3.553x107! 9.412x10™* 1.223x10°° 9.854x10®
700  6.023x107™%° 1.0681 x10° 5.801x10* 1.927x10™ 6.899x10° 1.528x10°®
80.0  3.457x107 4.4538 x107 3.422x10 3.864x107° 3.801x10? 2.320x10°
90.0  3.470x107 1.8272 x108 2.070x107® 7.622x108 2.070x10% 3.465x10%0
100 2.441x10° 7.4021x1078 1.110x10% 1.485x10718 1.110x10™ 5.110x10™
Example 2:

Consider the system of mildly stiff linear initial value problem

Y1 (0) =1
Y, (O) =8

y: =8y, +7Y,,
y; =42y, —43y,,

Whose exact solution is giving by

Yy, (X) = 2exp(—x) —exp(—50x)

Y, (X) = 2exp(—x) + 6exp(—50x) .
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This problem shows that to solve stiff equations the
stability of a good method should impose no
limitation on the step size, and hence it requires a

Skwame et al., ADSUJSR, 6(2):288-300, August, 2018

large stability region. The solution of this example
is shown in Table 2, while the region of absolute
stability is shown in Fig.1

Table 2: Absolute errors of numerical solutions of example 2 within the interval 10<x<100

X

Error in Method (18)

Error in Method (20)

Error in Yakubu (2010)

Y1 Y2 Y1 Y2 Y1 Y2
10.0  3.7762x10° 1.241x10° 3.4026x10° 2.781x10”7 2.8477 x10°  1.7827x10°
20.0  7.7285x10* 2.843x10°® 4.6957x10® 1.843x107 22959 x10° 3.7246x10°
300 2.9815 x10* 6.048x107 2.6505%10® 3.248x10°® 1.2762 x10°  7.7960 x10”
40.0  5.0360x10° 3.701x10° 2.3947 x10*  4.766x10°® 6.2503 x10°®  1.6317 x107
50.0  9.2208x10° 3.688x10°8 3.2812 x10?  2.482x10°° 2.8598 x10°®  3.4155x107®
60.0  2.6744x10° 6.266x10° 2.3141 x10"  5.251x10™° 1.2540 x10®  7.1490x107°
70.0  2.4106x107 3.022x10°® 5.0340x10%° 2.722x101 5.3409 x107  1.4963x107°
80.0  4.9468 x107 4.154x10™° 22382 x10™ 3.121x10%? 2.2269x107  3.1321 x10°
90.0  2.4149 x10°® 5.524x102 4.8010 x10™®  3.884x107%° 0.1364 x10®  6.5558 x10™*
100 3.8820 x10°° 3.652x10™° 8.1667 x10®*  2.781x10" 3.7010 x10®  1.3722x10™®
Conclusion Applied Science. Volume-3, Issuel. ISSN:

The purpose of the present paper has been to
introduce a special class of implicit second-
derivative  Runge-Kutta collocation  methods
suitable for the approximate numerical integration
of systems of ordinary differential equations. The
derived methods provide an efficient way to find
numerical solutions to systems of initial value
problems when the second derivative terms are
cheap to evaluate. We present two new methods of
orders three and four. We also presented summary
of numerical comparisons between the new
methods on a set of two systems of initial value
problems. The numerical comparisons as well as
establishing the efficiency of the new methods
show that the order three method and the order four
method shows more accuracy on all the problems
considered in the paper.
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