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Abstract 

We consider the construction of a new class of implicit Second-derivative Runge-Kutta collocation methods 

based on intra-step nodal points of Chebyshev-Gauss-Lobatto type, designed for the numerical solution of 

systems of initial value equations and show how they have been implemented in an efficient parallel computing 

environment. We also discuss the difficulty associated with large systems and how, in this case, one must take 

advantage of the second derivative terms in the methods. We involve the introduction of collocation at the two 

end points of the integration interval in addition to the Gaussian interior collocation points and also the 

introduction of a different class of basic second derivative methods. With these modifications, fewer function 

evaluations per step are achieved. The stability properties of these methods are investigated and numerical 

results are given for each method. 

 

Keywords: Block hybrid discrete scheme; Continuous scheme; System of equations; Second-derivative Runge-

Kutta methods 

 

Introduction 

In this paper, we present a new class of implicit 

second-derivative Runge-Kutta (SDRK) 

collocation methods for the numerical solution of 

initial value problems for systems of ordinary 

differential equations (ODEs), 
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the given initial value. Let 0h  be a constant 

step-size and define the grid by
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 where 
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 and a set of equally spaced points 

on the integration interval is defined by

Txxxxx no  1321 ,,
. The 

motivation for studying the implicit second-

derivative Runge-Kutta collocation methods, 

particularly, the Gauss–Runge–Kutta collocation 

family, is that, collocation at the Gauss points leads 

to Runge-Kutta methods which are symmetric and 

algebraically stable, Burrage and Butcher (1979). It 

was also shown in Yakubu (2003, 2010, 2011, 

2015, 2016) and Donald, Skwame and Dominic 

(2015) that the only symmetric algebraically stable 

collocation methods are those based on Gauss 

points. The inclusion of the two end points of the 

integration interval as collocation points in addition 

to the Gaussian interior collocation points make 

them more advantageous, because this minimizes 

the number of internal function evaluations 

necessary to achieve a given order of accuracy. 

Secondly, a substantial increase in efficiency 

maybe achieved by the numerical integration 

methods which utilize the second-derivative terms. 

Thirdly, the relatively good stability properties 

enjoyed by these methods make them more 

efficient for the numerical integration of system 

shaving Jacobians with eigenvalues lying close to 

the imaginary axis Adesanya, Fotta and Onsachi 

(2016) and Akinfenwa, Abdulganiy, Akinnukawe 

,Okunuga and Rufai (2017). 

 

In this paper, we follow the approach of Yakubu, 

Kumleng and Markus (2017) to derive a class of 

efficient implicit second-derivative Runge-Kutta 

collocation methods of high order accuracy, which 

converge rapidly to the required solutions. We 

hope that our study can stimulate further interest 

which will lead to a thorough investigation of the 

new class of methods. 

 

 A General Approach to the Derivation of the 

SDRK Collocation Methods 
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In this section, we shall carryout the general 

derivation of the special class of implicit second-

derivative Runge-Kutta collocation methods for 

direct integration of initial value problems of the 

form (1). We consider the multistep collocation 

approach of Onumanyi et al., [1994] and now 

extends to second derivative of the form, 
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We set the sum 
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 where, r denotes the number of interpolation points used, and  
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are distinct collocation points. 

Here 
)(xj

 , 
)(xj

 and 
)(xj are parameters of the methods which are to be determined. They are 

assumed to be polynomials of the form  
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We find it convenient to introduce the following polynomials 
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which we shall call the first, second and third characteristic polynomials respectively of (2). 

Here, our aim is to utilize not only the interpolation points 
}{ jx

 but also several collocation points on the 

interpolation interval of (2). This means that we employ a special type of Hermite interpolation for 
).(xy

 

Substituting (3) into (2) we have 
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Equation (4) reduces to 
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Here 
}{ jnc   are collocation points distributed on the step-points array, jny   is the interpolation data of 

)(xy
 

on jnjnjn yandyandx 
,

 are the collocation data of 
)()( xyandxy 

  , respectively, on
}{ jnc  . We 

set the sum tsr   to be equal to
p

 so as to be able to determine 
}{ i

 in (2) uniquely.  

To fix the parameters 
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we impose the following conditions: 
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In fact, equations (6) to (8) can be expressed in the matrix-vector form by 
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              (9) 

 

where the
yandvectorsptheVmatrixsquarep  ,

 are defined as follows: 
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where 
    211  ppDandpD

 represent first and second derivatives respectively. Similar to 

the Vandermonde matrix, V in (9) is non-singular. Consequently, equation (9) has the unique solution given by 
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The interpolation polynomial 
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in (5) can now be expressed explicitly as follows: 

 

 Tp
r

j

s

j

t

j

jnpjjnpjjnpj xxxyhyhyxy 12
1

0

1

0

1

0

1,

2

1,1, ,,,,1)( 






















    

.                        (12) 

Recall that
tsp 

, such that equation (12) becomes 

  .,,,,1)( 12
1

0

1

0

1

0

1,

2

1,1,

Ttsr
r

j

s

j

t

j

jntsrjjntsrjjntsrj xxxyhyhyxy 






















    

           (13) 

Expanding (13) fully, gives the continuous scheme; 
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where T denotes transpose of the matrix U in (11) and the vector
 12 ,,,,1  tsrxxx 

. 

 

In the second-derivative methods, we see that, in 

addition to the computation of the f -values at the 

internal stages in the standard Runge-Kutta 

methods Butcher (2014), the modified methods 

involve computing g-values, where g is defined by 

Butcher and Hojjati (2005) as     ,xygxy 
 
 

the component number i of   xyg can be written 

as, 

  
  

   



 .,,2,1, mixyf

y

xyf
xyg j

i

i
i   

 

According to Chan and Tsai (2010) these methods 

can be practical if the costs of evaluating g are 

comparable to those in evaluating f and can even be 

more efficient than the standard Runge-Kutta 

methods if the number of function evaluations is 

fewer. It is convenient to rewrite the coefficients of 

the defining method (13) evaluated at some points 

in the block matrix form as 
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final result depends on the derivatives computed at 

the various stages, I is the identity matrix of size 

equal to the differential equation system to be 

solved and N is the dimension of the system. Also

  is the Kronecker product of two matrices and e 

is the s×1 vector of units. For simplicity, we write 

the method in Yakubu (2017) as follows: 
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where s denotes stage values used in the computation of the step 1Y
, 2Y

 ,…, sY
. 

The coefficients of the Implicit Two-Derivative Runge-Kutta methods can be conveniently represented more 

compactly in an extended partitioned Butcher Tableau, of the form 
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where 
  11  sc

 is the abscissa vectors which indicates the position within the step of the stage values. 

 

Methods 

Third Order Implicit Second-Derivative Runge-Kutta Collocation Method 

For the first implicit second-derivative Runge-Kutta collocation method we define  nxx  and consider 

the zeros of Legendre polynomial of degree two in the symmetric interval  1,1 , which were transformed into 

the standard interval  1, nn xx . The proposed continuous scheme in (13) can now be written as, 
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Evaluating the continuous scheme  xy in (18) at the points vnunn xandxxx  ,1 (where u and v are the 

zeros of Legendre polynomial of degree 2) we obtain the  implicit second- derivative Runge-Kutta collocation 

method of uniformly order 3 with only 2-stages with the following block hybrid discrete scheme: 
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Converting the block hybrid discrete scheme to implicit second-derivative Runge-Kutta method and using (16) 

we write the method as, 
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The implicit second-derivative Runge-Kutta collocation method has order p = 3. Writing the method in an 

extended Butcher Tableau (16), we have 

 

 

 

 

 

 

 

 

 

 

 

A Fourth Order Implicit Second-Derivative 

Runge-Kutta Collocation Method 

Next, as the order of the method being sought for 

increases, the algebraic conditions on the 

coefficients of the method become increasingly 

complicated. However, we consider again the two 

end points of the integration interval as collocation 

points in addition to the 

Gaussian interior collocation points, obtained in the 

same manner as in method (18) with the same

  02 xp , Legendre polynomial of degree 2. 

Thus, the proposed continuous scheme in (13) 

takes the 

following form: 

 

             vnunvnunno gxgxhfxfxhyxxy   21

2

21            (19) 
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Evaluating the proposed continuous scheme  xy in (19) at the points vnunn xandxxx  ,1 (where u and v 

are the zeros of Legendre polynomial of degree 2) we obtain the block hybrid discrete scheme as follows: 
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Solving the block hybrid discrete scheme simultaneously, we obtain the higher order implicit second-derivative 

Runge-Kutta collocation method written in the formalism of (15) as follows: 
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where the internal stage values at the 
thn step are computed as: 
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where the stage derivatives are calculated as follows: 
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The implicit second-derivative Runge-Kutta collocation method has order p = 4. Writing the method in an 

extended Butcher Tableau (16), we have 
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Analysis of the Second Derivative Runge-Kutta Collocation Methods 

Order, Consistency, Zero-stability and Convergence of SDRKC Methods 

With the multistep collocation formula (2) we associate the linear difference operator  defined by 
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where  xy is an arbitrary function, continuously differentiable on  ba, , following Yakubu (2010), we can 

write the terms in (20b) as a Taylor series expansion about the point x to obtain the expression, 
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According to [24], the multistep collocation formula (2) has order p if 
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Therefore 
1pC is the error constant and 

 11

1





pp

p yhC is the principal local truncation 

error at the point nx (Chan and Tai [2010]). 

Therefore, the order and the error constants for the 

two methods constructed are represented in Table1. 

 

 

Table1: Order and error constants of SDRK collocation methods 

 

Method Order Error constant 
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Method (18) 3p

3p

3p  

 

2

4 102383.7  xC  
2

4 10597.8  xC  
2

4 107617.3  xC  

Method (20) 4p  
4p  
4p  

 

2

5 104583.1  xC  
2

5 101193.1  xC  
2

5 100547.1  xC  

 
Definition 1: Yakubu and Kwami (2015) The 

implicit second-derivative Runge-Kutta collocation 

(18) and (20) are said to be consistent if the order 

of the individual method is greater than or equal to 

one, that is, if .1p  

.21
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

 

Definition 2:. Yakubu et. al., (2010) The second 

derivative Runge-Kutta collocation methods (18) 

and ( 20) are said to be zero-stable if the roots 
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Satisfies kjj ,,2,1,1   and for those 

roots with 1j , the multiplicity does not 

exceed 2. 

 

Definition 3: Yakubu et al., (2010) The necessary 

and sufficient conditions for the SDRK collocation 

methods (18) and (20) to be convergent are that 

they must be consistent and zero-stable. 

 

Stability regions of the SDRK collocation methods 
In this paper stability properties of the methods are 

discussed by reformulating the block hybrid 

discrete schemes as general linear methods by 

Butcher (2014) and Butcher and Hojjati (2005). 

Hence, we use the notations introduced by Butcher 

and Hojjati (2005), where a general linear method 

is represented by a partitioned    rsxrs 

matrix (containing A,U, B and V), 
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and ].1,,1[ e  

Hence (21 ) takes the form 
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Where r denotes quantities as output from each step 

and input to the next step and s denotes stage 

values used in the computation of the step 

.,,, 21 syyy  The coefficients of these matrices 

VandBUA ,,, indicate the relationship 

between the various numerical quantities that arise 

in the computation of stability regions. The 

elements of the matrices VandBUA ,,, are 

substituted into the stability matrix which leads to 

the recurrent equation 
      hZNnyzMy nn  ,1,,3,2,1,1   

where the stability matrix 

    UzAIzBVzM
1

  

and the stability polynomial of the method can 

easily be obtained as follows: 

    .det, 2 BVzUzArz   

The absolute stability region of the method is 

defined as 

  .11,:   zCx  

 

 

Computing the stability functions gives the stability polynomials of the methods, which are plotted to produce 

the required graphs of the absolute stability regions of the methods as displayed in Fig. 1. 

 
 Fig1: Regions of absolute stability of method (18) and method (20) respectively 

Remark: The regions of absolute stability of 

methods (18) and (20)  are stableA since the 

region consists of the complex plane outside the 

enclosed figures. 

 

 

Numerical Results 

Preliminary numerical experiments have been 

carried out using a constant step size 

implementation in Matlab. The test examples are 

some systems of ordinary differential equations 

written as first order initial value problems. We 

solved these systems and compared the obtained 

results side by side in Tables. 
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Example 1: 

We consider a well-known classical system which is a mildly stiff problem composed of two first order 

equations, 
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and the exact solutions given by the sum of two decaying exponential components 
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The stiffness ratio is R = 1000 and the problem is 

solved numerically on the interval [10,100]. We 

have solve the problem using the newly derived 

Gauss-Radau-Runge-Kutta collocation methods 

and Continuous General Linear methods of Yakubu 

(2017) The numerical results obtained are shown in 

Table 1, while the region of absolute stability 

shown in Fig.1. 

 

Table 1: Absolute errors of numerical solutions of example 1 within the interval 10≤x≤100 

x Error in Method (18) Error in Method (20) Error in Yakubu (2010) 

Y1 Y2 Y1 Y2 Y1 Y2 
10.0 4.684×10

-4 4.4075×10
-3 3.452×10

-6 4.607×10
-5 4.642×10

-3 4.754×10
-3 

20.0 5.558×10
-6 4.2692 ×10

-6 4.522×10
-7 2.728×10

-6 6.808×10
-5 9.838×10

-5 

30.0 5.689×10
-6 2.5522 ×10

-5 6.344×10
-8 8.572×10

-8 5.356×10
-6 2.078×10

-5 
40.0 3.895×10

-6 1.2500 ×10
-6 4.255×10

-8 2.029×10
-8 3.476×10

-7 3.705×10
-6 

50.0 1.125×10
-7 5.7196 ×10

-6 3.232×10
-9 4.464×10

-11 2.107×10
-8 6.173×10

-7 
60.0 3.223×10

-9 2.5080 ×10
-7 3.553×10

-11 9.412×10
-12 1.223×10

-9 9.854×10
-8 

70.0 6.023×10
-10

 1.0681 ×10
-6 5.801×10

-12
 1.927×10

-14
 6.899×10

-10
 1.528×10

-8 
80.0 3.457×10

-13
 4.4538 ×10

-7 3.422×10
-14

 3.864×10
-16

 3.801×10
-12

 2.320×10
-9

 

90.0 3.470×10
-14

 1.8272 ×10
-8 2.070×10

-16
 7.622×10

-18
 2.070×10

-13
 3.465×10

-10
 

100 2.441×10
-16

 7.4021×10
-8 1.110×10

-20
 1.485×10

-18
 1.110×10

-14
 5.110×10

-11
 

 

Example 2: 

Consider the system of mildly stiff linear initial value problem  

 
8)0(,4342

1)0(,78

2212

1211





yyyy

yyyy
  

Whose exact solution is giving by    

)50exp(6)exp(2)(

)50exp()exp(2)(

2

1

xxxy

xxxy




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This problem shows that to solve stiff equations the 

stability of a good method should impose no 

limitation on the step size, and hence it requires a 

large stability region.  The solution of this example 

is shown in Table 2, while the region of absolute 

stability is shown in Fig.1 

 

Table 2: Absolute errors of numerical solutions of example 2 within the interval 10≤x≤100 

x Error in Method (18) Error in Method (20) Error in Yakubu (2010) 

Y1 Y2 Y1 Y2 Y1 Y2 

10.0 3.7762×10
-4 1.241x10

-5 3.4026×10
-8 2.781x10

-7 2.8477 ×10
-5 1.7827×10

-6

  
20.0 7.7285×10

-4 2.843x10
-6 4.6957×10

-8 1.843x10
-7 2.2959 ×10

-5

  
3.7246×10

-6 

30.0 2.9815 ×10
-4 6.048x10

-7 2.6505×10
-8 3.248x10

-8 1.2762 ×10
-5 7.7960 ×10

-7 
40.0 5.0360×10

-6 3.701x10
-6 2.3947 ×10

-11 4.766x10
-8 6.2503 ×10

-6 1.6317 ×10
-7 

50.0 9.2208×10
-6 3.688x10

-8 3.2812 ×10
-12 2.482x10

-9 2.8598 ×10
-6 3.4155×10

-8 
60.0 2.6744×10

-6 6.266x10
-9 2.3141 ×10

-11 5.251x10
-10 1.2540 ×10

-6 7.1490×10
-9 

70.0 2.4106×10
-7 3.022x10

-8
 5.0340×10

-13 2.722x10
-11

 5.3409 ×10
-7

 1.4963×10
-9 

80.0 4.9468 ×10
-7

  
4.154x10

-10
 2.2382 ×10

-14

  
3.121x10

-12
 2.2269×10

-7
 3.1321 ×10

-10
 

90.0 2.4149 ×10
-8 5.524x10

-12
 4.8010 ×10

-16 3.884x10
-15

 9.1364 ×10
-8

 6.5558 ×10
-11

 

100 3.8820 ×10
-9 3.652x10

-15
 8.1667 ×10

-16 2.781x10
-17

 3.7010 ×10
-8

 1.3722×10
-13

 

 

Conclusion 

The purpose of the present paper has been to 

introduce a special class of implicit second-

derivative Runge-Kutta collocation methods 

suitable for the approximate numerical integration 

of systems of ordinary differential equations. The 

derived methods provide an efficient way to find 

numerical solutions to systems of initial value 

problems when the second derivative terms are 

cheap to evaluate. We present two new methods of 

orders three and four. We also presented summary 

of numerical comparisons between the new 

methods on a set of two systems of initial value 

problems. The numerical comparisons as well as 

establishing the efficiency of the new methods 

show that the order three method and the order four 

method shows more accuracy on all the problems 

considered in the paper. 
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