
                                                                                                                                                                                                                                                                         

178 

 

Adamawa State University Journal of Scientific Research 

ISSN: 2251-0702 (P) 

Volume 6 Number 2, August, 2018; Article no. ADSUJSR 0602016 

http://www.adsujsr.com 

 
On Exact Discretization Technique for the Solution of Oscillatory Problems of Third Order   

 

Sunday, J.1,  Abdullahi, J.2, Manga, I.2 and Sarjiyus, O.2 

1Department of Mathematics, Adamawa State University, Mubi, Nigeria 
2Department of Computer Science, Adamawa State University, Mubi, Nigeria 

Contact: sunday578@adsu.edu.ng 

 

Abstract 

One of the techniques needed to construct an efficient method for the solution of oscillatory problems is exact 

discretization. This technique is adopted in the construction of a new Exact Finite Difference Scheme (EFDS) 

for the solution of third order oscillatory problems. In carrying out the construction of the method, it was 

assumed that at any point within the interval of integration, the approximate/numerical solution coincides with 

the exact/theoretical solution. The analysis of the method was also carried out to show that third order 

oscillatory problems that possess solutions also have their corresponding EFDS. The method derived was then 

applied on some modeled third order oscillatory problems and from the results obtained, it is obvious that the 

EFDS derived did not exhibit any numerical instabilities. As a matter of fact, the computed solutions of the 

EFDS are exactly equal to the exact solutions. 
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Introduction 

According to Sunday (2018), one of the most 

challenging equations being encountered nowadays 

are the oscillatory differential equations. This is 

because their solutions are composed of smooth 

varying and ‘nearly periodic’ functions, i.e. they 

are oscillations whose wave form and period varies 

slowly with time (relative to the period), and where 

the solution is sought over a very large number of 

cycles, (Stetter, 1994). For such problems, one 

cannot and does not want to follow the trajectories; 

instead one resort to finding their approximate 

solutions or the computation of their quasi-

envelops. The difficulty of solving such problems 

is explained by the necessity to ensure correct 

values of the amplitude and phase angle over many 

periods.  

 

In this research, exact discretization technique shall 

be employed in developing an EFDS for the 

solution of third order oscillatory problems of the 

form: 

 

 Ttytyytyytytyyytf
dt

yd
,0,'')('',')(',)(),,,'',',,( 0000003

3

      (1) 

 

where ),,'',',( tyyyf  is has a unique solution 

over the interval  TTt ,0  and for   in 

the interval 21   . A major advantage of 

having an exact difference equation model for a 

differential equation is that questions related to the 

usual consideration of consistency, stability and 

convergence need not arise (Mickens, 1994). 

 

It is assumed that equation (1) satisfies the 

existence and uniqueness theorem of differential 

equations. It is also assumed that the solutions to 

equations of the form (1) are bounded. It is 

important to state that a solution )(ty to equation 

(1) is said to be bounded if, 




)(sup ty
t

   (2) 

Equation (1) has a wide range of applications in 

engineering, thermodynamics and other real life 

problems. They are also applied in studying thin-

film flows (Duffy and Wilson, 1997), chaotic 

systems (Genesio, R. and Tesi, 1992), 

electromagnetic waves (Lee, Fudziah, and 

Norazak, 2014), among others. 

mailto:sunday578@adsu.edu.ng


                                                                                         Sunday, et. al.,  ADSUJSR, 6(2): 178-185, August, 2018 

 

 

179 

 

 

The EFDS is a special form of Non-Standard Finite 

Difference Method (NSFDM). The exact 

discretization technique method was first discussed 

by Potts (1982). He considered the question that 

whether a linear ordinary difference equation that 

has the same general solution with the given linear 

ordinary differential equation can be determined. 

Also, according to Agarwal (2000), any ordinary 

differential equation has the exact discretization if 

its solution exists. More importantly, studies have 

shown that this statement is also true for partial 

differential equations (Roeger, 2008).  

 

Some EFDS have been derived by authors to 

directly solve third order problems of the form (1), 

Rucker (2003) constructed an EFDS for a nonlinear 

partial differential equation having linear advection 

and an odd-cubic reaction term. Mickens, Oyedeji 

and Rucker (2005) derived an EFDS for second 

order linear equations. Roeger (2008) derived 

EFDS for a two-dimension linear system with 

constant coefficients. Sunday (2010) also 

developed an EFDS for the numerical solution of 

initial value problems in ordinary differential 

equations. Cieslinski (2011) developed an EFDS 

for classical harmonic oscillator equation. In 2014, 

Zhang, Wang and Ding also constructed EFDS and 

NSFDS for Burgers and Burgers-Fisher equations. 

Also, see the works of Adesanya, Udoh, and 

Ajileye (2013), Lee, Fudziah, and Norazak (2014), 

Sunday (2018) for block methods developed for the 

solution of problems of the form (1).  

 

Definition 1 

A differential equation is said to be oscillatory if, 

(i) all the nontrivial solution of (1) have an 

infinite number of zeros (roots) on 

0x x   , see Kanat (2006),  and 

(ii) it has at least one oscillating solution, 

see Borowski and Borwein (2005) 

 

Definition 2: Anguelov and Lubuma (2001) 

A finite difference scheme is called non-standard 

finite difference method, if at least one of the 

following conditions is met; 

i) in the discrete derivative, the traditional 

denominator is replaced by a non-negative 

function   such that,  

2( ) ( ), 0h h o h as h      (3) 

ii) non-linear terms that occur in the 

differential equation are approximated in a 

non-local way i.e. by a suitable functions 

of several points of the mesh. For 

example,

2 3 2

1 1 1 1 1, , ,n n n n n n n n ny y y y y y y y y y y     

. 

Definition 3: (Mickens, 1994) 

An EFDS is one for which the solution to the 

difference equation has the same general solution 

as the associated differential equation. 

Below, we give the standard finite discrete 

representations for some derivatives; 

h
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Analysis of the Exact Finite Difference Scheme  

In carrying out the analysis of the EFDS, it is 

important to state that the solution to equation (1) 

can be written as, 

),,'',',,()( 0000 ttyyyty     (7) 
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Consider a discrete model of equation (1) given by, 

  hnttyyyhgy nnnnnn   ,,,,,, 211   (9) 

Its solution can be expressed in the form, 

 nn ttyhy ,,,, 00    (10) 
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Definition 4  

Equations (1) and (9) are said to have the same 

general solution if and only if 

)( nn tyy        (12) 
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for arbitrary values of h . 

 

Theorem 1 

The differential equation (1) has an EFDS given by 

the expression, 

 112211 ,,,,,,,   nnnnnnnn ttttyyyy      13) 

where   is that of equation (7). 

 

Proof  

The group property of the solu tions to equation (1) 

gives, 

 htththttyhty  ,,,2),(,)(       (14) 

If we now make the modifications, 

nn ytytt  )(,         (15) 

then, equation (14) becomes, 

 112211 ,,,,,,,   nnnnnnnn ttttyyyy      (16) 

 

This is the required ordinary difference equation 

that has the same general solution as equation (1). 

It is important to note the following implications 

from the theorem above. 

(i) If all solutions of (1) exist for all time, 

T , then equation (14) holds for 

all handt . Otherwise, the relation 

is assumed to hold whenever the right 

side of (14) is well defined 

(ii) The theorem is only an existence theorem. 

That is, if an ordinary differential 

equation has a solution, then an EFDS 

exists. According to Mickens (1994), 

no guidance is given as to how to 

actually construct such a scheme. 

(iii) A major implication of the theorem is that 

the solution of the difference equation 

is exactly equal to the solution of the 

ordinary differential equation on the 

computational grid for fixed, but, 

arbitrary step-size h . 

 

Derivation of the Exact Finite Difference Scheme 

via Exact Discretization 

Theorem 1 stated earlier shall be adopted in 

constructing an EFDS (via discretization) for third 

order oscillatory problems of the form (1) for 

which exact general solutions are explicitly known. 

These schemes have the property that their 

solutions do not have numerical instabilities. 

It is important however to note that given a set of 

linearly independent functions, 

  Nity i ,...,2,1;)(                        (17) 

It is always possible to construct an thN  order 

linear difference equation that has the 

corresponding discrete functions as solutions 

(Mickens, 1990). Let, 

  hnntttyy nn

ii

n  ),()()(
                  (18) 

Then the following determinant gives the required 

difference equation, 
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Consider the equation of the form (1), let us 

assume that the exact solution of the problem (1) at 

the point ntt   denoted by )( nty  has the same 

general solution with the numerical solution of the 

difference equation at the same point ntt   

denoted by ny . Thus, from equation (19), the 

corresponding difference equation is given by, 
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Evaluating the determinant of (20), we obtain 
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Solving (21) for 3ny , we obtain 
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Shifting downward the index n  by two units, we get 
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Equation (23) is the EFDS capable of solving any problem of the form (1). It is important to note that the EFDS 

(23) is of the form (13) 

 

Results 

The EFDS developed in this research shall be 

adopted in solving some modeled real-life 

oscillatory  

 

 

problems of the form (1). The following notations 

shall be used in the tables below. 

  ESJ-Absolute error in Sunday (2018) 

  Eval sec/t - Evaluation time per seconds 

for computation at each stage 

Problem 1:  

Consider the third order oscillatory problem,  

2)0('',1)0(',0)0(),('
3

3

 yyyty
dt

yd   (24) 

whose exact solution is given by, 

ttty sin)cos1(2)(           (25) 

Source: Sunday (2018) 

 

On the application of the newly derived EFDS (23) on Problem 1 we obtain the result presented in Table 1 

below. 

 

Table 1: Showing the result for problem 1  

    t             Exact Solution        Computed Solution            Error                   ESJ          Eval sec/t  

0.1000    0.109825086090777     0.109825086090777     0.000000e+000     3.7470e-016         0.1121    

0.2000    0.238536175112578     0.238536175112578     0.000000e+000     8.3267e-016         0.1281     

0.3000    0.384847228410128     0.384847228410128     0.000000e+000     1.3878e-015         0.1492    

0.4000    0.547296354302881     0.547296354302881     0.000000e+000     1.4433e-015         0.1664    

0.5000    0.724260414823458     0.724260414823458     0.000000e+000     1.5543e-015         1.1884    

0.6000    0.913971243575679     0.913971243575679     0.000000e+000     1.9984e-015         1.2051    

0.7000    1.114533312668715     1.114533312668715     0.000000e+000     2.8866e-015         1.2222    

0.8000    1.323942672205193     1.323942672205193     0.000000e+000     4.4409e-015         1.2553    

0.9000    1.540106973086156     1.540106973086156     0.000000e+000     3.5527e-015         1.2726    

1.0000    1.760866373071619     1.760866373071619     0.000000e+000     5.3291e-015         1.2947   
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Problem 2:  

Consider the third order oscillatory problem,  

01.0,1)0('',0)0(',1)0(),()(')(''
3

3

 hyyytytyty
dt

yd
  (26) 

whose exact solution is given by, 

tty cos)(           (27) 

Source: Sunday (2018) 

 

On the application of the newly derived EFDS (23) on Problem 2 we obtain the result presented in Table 2 

below. 

 

Table 2: Showing the result for problem 2 

    t             Exact Solution        Computed Solution              Error                ESJ          Eval sec/t  

0.0100    0.999950000416665    0.999950000416665     0.000000e+000     1.1102e-016      0.0190    

0.0200    0.999800006666578    0.999800006666578     0.000000e+000     1.3323e-015      0.0194    

0.0300    0.999550033748988    0.999550033748988     0.000000e+000     9.6589e-015      0.0197    

0.0400    0.999200106660978    0.999200106660978     0.000000e+000     3.2974e-014      0.0201    

0.0500    0.998750260394966    0.998750260394966     0.000000e+000     8.2379e-014      0.0207    

 

Problem 3:  

Consider the third order oscillatory problem,  

2)0('',0)0(',1)0(,sin3
3

3

 yyyt
dt

yd  (28) 

whose exact solution is given by, 

 

2
2

cos3)(
2


t

tty          (29) 

Source: Sunday (2018) 

 

On the application of the newly derived EFDS (23) on Problem 3 we obtain the result presented in Table 3 

below. 

 

Table 3: Showing the result for problem 3  

    t             Exact Solution         Computed Solution             Error                    ESJ            Eval sec/t  

0.1000    0.990012495834077    0.990012495834077    0.000000e+000     3.3307e-016         0.0050    

0.2000    0.960199733523725    0.960199733523725    0.000000e+000     3.3307e-016         0.0061    

0.3000    0.911009467376818    0.911009467376818    0.000000e+000     3.3307e-016         0.0069    

0.4000    0.843182982008655    0.843182982008655    0.000000e+000     1.1102e-016         0.0072    

0.5000    0.757747685671118    0.757747685671118    0.000000e+000     1.1102e-016         0.0077    

0.6000    0.656006844729034    0.656006844729034    0.000000e+000     4.4409e-016         0.0081    

0.7000    0.539526561853465    0.539526561853465    0.000000e+000     5.5511e-016         0.0085    

0.8000    0.410120128041496    0.410120128041496    0.000000e+000     5.5511e-016         0.0090    

0.9000    0.269829904811993    0.269829904811993    0.000000e+000     7.2164e-016         0.0093    

1.0000     0.120906917604418    0.120906917604418     0.000000e+000      1.0547e-015          0.0097 

 

Problem 4:  

Consider the third order oscillatory problem,  
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whose exact solution is given by, 

2
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Source: Sunday (2018) 

 

On the application of the newly derived EFDS (23) on Problem 4 we obtain the result presented in Table 4 

below. 

 

Table 4: Showing the result for problem 4 

    t             Exact Solution        Computed Solution           Error                  ESJ           Eval sec/t  

0.1000    0.004987516654767    0.004987516654767     0.000000e+000     8.3209e-013         0.0193    

0.2000    0.019801063624459    0.019801063624459     0.000000e+000     3.4752e-012         0.0241    

0.3000    0.043999572204435    0.043999572204435     0.000000e+000     7.8178e-012         0.0387    

0.4000    0.076867491997407    0.076867491997407     0.000000e+000     1.3681e-011         0.0533    

0.5000    0.117443317649724    0.117443317649724     0.000000e+000     2.0825e-011         0.0678     

0.6000    0.164557921035624    0.164557921035624     0.000000e+000     2.8962e-011         0.0786    

0.7000    0.216881160706205    0.216881160706205     0.000000e+000     3.7764e-011         0.0864    

0.8000    0.272974910431492    0.272974910431492     0.000000e+000     4.6879e-011         0.0901   

0.9000    0.331350392754954    0.331350392754954     0.000000e+000     5.5941e-011         0.1001    

1.0000    0.390527531852590    0.390527531852590     0.000000e+000     6.4592e-011         0.1009    

 

Results and Discussion  

The results obtained in Tables 1-4 clearly show that 

the EFDS in equation (23) is computationally 

reliable and efficient. This is because the computed 

solution matches exactly with the exact solution. In 

fact, the method performed better than the ones 

with which we compared our results. The method is 

also efficient because from the tables, the 

evaluation times per seconds are very small. This 

shows that the method generates results very fast 

(in microseconds). 

 

Conclusion 

A new EFDS has been developed in this paper for 

the solution of third order oscillatory problem. The 

method developed was applied on some modeled 

problems and from the results obtained, it is clear 

that the method is computationally reliable. The 

analysis of the method derived was also carried out. 

A major advantage of the method is that it does not 

exhibit any numerical instability.  
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