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Abstract
A Hybrid Backward Differentiation Formula (HBDF) of uniform order ten is proposed for the solution of
second order stiff Initial Value Problems (IVPs) is studied in this article. The approach adopted for the
derivation of backward differentiation formulae involves interpolation and collocation at appropriate selected
points. The proposed order ten HBDF for general second order ODEs was found to be consistent, zero-stable
and convergent. Numerical evidences show that the method proposed here perform favorable when compared

with existing scheme as it yielded better accuracy.
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Introduction

Most of the improvements in the class of Linear
Multistep Methods (LMMs) have been based on
Backward Differentiation Formula (BDF), because
of its special properties. Among the first
modifications introduced by different authors was
the Extended Backward Differentiation formulas
(EBDFs), introduced in 1980 by Cash, in which
one-super future point technique was applied. Cash
(1981), proposed second derivative EBDFs for the
numerical integration of stiff systems. Also, the
integration of stiff initial value problems in ODEs
using modified extended backward differentiation
formula was studied in Cash (1983). The BDFs are
implicit linear k —step method with regions of

absolute stability large enough to make them
relevant to the problem of stiffness. Backward
differentiation methods were introduced Curtiss
and Hirschfelder (1952), Muhammad and Yahaya
(2012), among others. In the early 1950s, as a
result of some pioneering work by Curtiss and
Hirschfelder (1952), Stuart and Humphries (1996)
realized that there was an important class of
Ordinary Differential Equations (ODEs), which
have become known as stiff equations, which
presented a severe challenge to numerical methods

that existed at that time. Since then an enormous
amount of effort has gone into the analysis of stiff
problems and, as a result, many numerical methods
have been proposed for their solution. More
recently, however, there have been some strong
indications that the theory which underpins stiff
computation is now quite well understood, and, in
particular, the excellent text of Hairer and Wanner,
(1996), has helped put this theory on a firm basis.
As a result of this, some powerful codes have now
been developed and these can solve quite difficult
problems in a routine and reliable way.
Interestingly, differential equations arising from the
modeling of physical phenomena often do not have
exact solutions. Hence, the development of
numerical methods to obtain approximate solutions
becomes necessary. To that extent, several
numerical methods such as finite difference
methods, finite element methods and finite volume
methods, among others, have been developed based
on the nature and type of the differential equation
to be solved.

This research focuses on developing a new HBDF
for the solution of second order initial value
problems of the form,

y =t v.y) vs)=a y(x)=b as<x<b (1)

Block methods for solving problems of the form
(1) have initially been proposed by Milne (1953).
The Milne’s idea was further developed by Rosser

(1967) for Runge-Kutta method. Also block BDFs
are discussed and developed by many researchers,
Jiaxiang and Cameron (1995), lbrahim, Othman
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and Suleiman (2007), Akinfenwa, Jator and Yoa
(2011, 2013), Ali and Gholamreza (2011), Yahaya
and Mohammed (2009, 2010a, 2010b), Fatunla
(1991), Raft and Zurmi (2016), Skwame et. al.
(2017a), Skwame, Kumleng and Bakari (2017h),
Tumba, Sabo and Hamadina (2018), among others.

Materials and Methods
We seek an approximation of the form,

s+r-1

Y(x)=3 ;%! )

where gjare unknown coefficients to be

determined and r and s are the numbers of

interpolation and collocation points respectively.
We then construct our continuous approximation
by imposing the following conditions,

Y(x)=x!., j=0,12-- k-1 ©)

n+s?

Y” (Xn+k ): fn+k (4)

We note that yw is the numerical

approximation to the analytical solution,

y(xn+,u )’ fn+y =f (Xn+/u yn+/u y ”*/1)
Equations (3) and (4) lead to a system of (k+1)
equations which is solved by Cramer’s rule to

obtainﬁj. Our continuous approximation is
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constructed by substituting the values of / j into

equation (2). After some manipulation, the
continuous method is obtained as,

Y(0=3" a,(x)y,., +het, (o, +h2 A0 O

j=0

&, (x), and £, (x) e
continuous coefficients to determined. We note that
since the general second order ordinary differential
equation involves the first derivative, the first
derivative formula is given by.

where a; (),

Y (0= @39y, +ha's(y,., +0*B(x)1,, ©

j=0
Y (x)=5(x) )
Y'(a)=5, (8)
To construction the double-step implicit second
derivative backward differentiation formulae with

two off-grid points at interpolation and collocation,
we use equation (5) to obtain a continuous

2 —step HBDF with the following specification,
r=1s=10k=2. We also express
a; (X), a, (X), and S, (X) as a functions

X=X,
h

of t, where - to obtain the continuous

form as follows:

2
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Evaluating (9) at X=X

n+i?

. 1
1=0, E’ 1 g, 2 vyields the second derivative HBDF as follows,
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These four set of equations above form the new In this section, the analysis of the basic properties
HBDF for the solution of problems of the form (1). of the newly derived HBDF shall be carried out.

Analysis of Basic Properties of the New HBDF
Order and Error Constants of the HBDF
Definition 1 (Lambert, 1991)

The linear difference operator 14 associated with a LMM is defined by

/Ly, = jkzo[(a,-y(m in)-+hB,y (x+ jh)+h?B,y" (x+ jh)] (10)

where y(x) is an arbitrary test function and it is continuously differentiable on [a, b]. Expanding
y(x + jh) and y'(x + jh) as Taylor series about X , and collecting common terms yields

CLY(X);h] =y (X) +chy'(X) +---+C hTy () +--- (11)

where the constant Cq, g=0,1, --- coefficients are given as follows
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c, :i(aﬁ_zqaz+_,,+kqak)_ﬁ(ﬂl+2(q—1)ﬂz_,_..._,_k(q—l)ﬁk)’ g=23,--

q!

According to Lambert (1973), the method (5) has order p if

C,=¢=--=C,=C,,0andc,, =0

Cp+2 is the error constant, and P is the order of the LMM. Therefore, the new HBDF is of uniform order ten,

with error constants given by

Co =[8.5588x10"° 9.9413x10™° 1.1324x10° 1.9883x10°[

Consistency of the HBDF

Lambert (1973), explained that consistency
controls the magnitude of the local truncation error
while zero stability controls the manner in which
the error is propagated at each step of the
calculation.

Definition 2 (Lambert, 1973)
A LMM is said to be consistent if its order p >1
According to Definition 2, the HBDF is consistent.

I1(r) =|r

o o =

0
1
0
00

- O O O

Zero-Stability of the HBDF

Definition 3 (Dahlquist, 1963)

A LMM is said to be zero-stable if the first
characteristic polynomial T1(r) satisfies Ir,|<1 and
if every root satisfying |r,|=1 have multiplicity not
be greater than two. In order to find the zero-
stability of HBDF, we only consider the first

characteristic polynomial of the method according
to Definition 3 as follows,

0
8 =r¥(r-1)

o O O

1
1
1

o O O O

0 01

which implies r =0, 0, 0, 1. Hence, the HBDF is zero-stable sincelr,|<1.

Convergence of the HBDF

Convergence is an essential property that every
acceptable LMM must possess. According to
Dahlquist (1963), consistency and zero-stability are
the necessary conditions for the convergence of any
numerical method.

Theorem 1 (Dahlquist, 1963)

The consistency and zero stability are sufficient
condition for linear multistep method to be
convergent. Since the HBDF is consistent and zero-

stable, it implies that the method is convergent for
all points.

Region of Absolute Stability of the HBDF

The absolute stability region consists of the set of
points in the complex plane outside the enclosed
figure. The absolute stability region of backward
difference formulae is obtained using Dahlquist
(1963) and is shown below.
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Figure 1: Absolute Stability Region of the HBDF
Numerical Experiments Problem 1
To illustrate the performance of our proposed Consider the stiff system
method, we will compare their performance with y, =198y, +199y, Y1(0)=1

the existing methods. The problems considered are
the ones solved by Skwame et. al. (2017a),
Skwame, Kumleng and Bakari (2017b) and Tumba,
Sabo and Hamadina (2018). Y1 (X) =e

Y2 (X) =€

y, =-398y, -399y, y,(0)=-1, h=0.1
with the exact Solution

X

X
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Table 1: Comparison of the absolute error of the new HBDF with those of Skwame, Kumleng and Bakari
(2017b) and Skwame et al., (2017a)

Absolute errors in of Skwame, Absolute error in HBDF

etal., (2017a)

X Absolute errors in of Skwame,
Kumleng and Bakari (2017b)

K=2and p=6 K=1and p=10 K=2and p=10

yl(X) Y, (X) yl(X) Y, (X) yl(X) Y, (X)
0.1 3.61x10°7 3.60x1077 2.60x107° 2.60x10°° 3.90x10°° 2.90%x107°
0.2 3.21x107 3.30x1077 2.42x10°° 2.42x10°° 1.62x107® 1.52x107°
0.3 6.28x1077 3.27x107 2.18x10° 2.18x10° 1.91x10°® 1.84%x10°®
0.4 5.65%x1077 5.65x1077 3.90x10°° 3.90x10°® 2.78x10°® 2.70x107®
0.5 6.69%x107 6.68x1077 3.58x10° 3.58%x10° 2.91x10°® 2.84%x10°®
0.6 6.03x10° 6.02x1077 3.23x10°® 3.23%x10°° 3.46x10°® 3.39x10°®
0.7 592x10”" 5.92x1077 4.35x107° 4.35x10°° 3.44x10°® 3.38x10°°
0.8 5.36x107" 5.37x1077 3.97x10°° 3.97x10°° 3.78x10°® 3.30%x107®
09 7.38x107 7.38x1077 3.59x10° 3.59x10°° 3.70x107® 3.65x10°®
1.0 6.70x107 6.70x1077 4.31x10°° 4.30x10°° 3.88x10°° 3.84x10°®
Problem 2

Consider the stiff system

yi =8y, +7y,;¥,(0)=1
y; =42y, -43y,:y,(0)=8
with the exact solution
y,(x)=2e" —e

—50x

y,(X)=2e™ —6e %

Table 2: Comparison of the absolute error of the new HBDF with those of Tumba, Sabo and Hamadina (2018)
and Skwame et. al. (2017a)

X Error in Tumba, Sabo and Error in Skwame et. al. (2017a) Error in HBDF

Hamadina (2018)

K=1land p=8 K=1land p=10 K=2and p=10

y.(x) Y,(x) y.(x) Y,(x) y1(x) ¥ (x)
0.1 2.36x107* 8.23x1072 1.32x10° 8.10x 1072 3.82x107° 8.11x1072
0.2 3.26x10°° 1.32x1071 1.90x10°° 5.50x107* 2.22x10™" 1.88x107°
0.3 2.60x107® 3.95x10° 4.00x10°° 3.70x10°° 1.51x10°° 1.27x107°
0.4 5.00x107° 3.20x10°® 4.00x107° 2.10x10°® 7.00x107® 4.40x1077
05 8.00x10° 7.00x107° 2.00x10°° 3.00x107° 1.00x107° 3.00x10°°
0.6 8.00x10°° 6.00x107° 3.00x10° 2.00x107°° 0 2.00x107°
0.7 7.20%x107° 8.40x107° 450%x107° 2.90x107° 3.00x107* 1.00x107°
08  8.20x10° 7.60x107° 4.10x10°  3.70x10° 2.00x10°* 1.50x10°°
0.9 8.40x107° 8.50%x107° 4.60x107° 4.00x10°° 4.00x107"° 1.00x10™*°
1.0 8.50x10° 8.00x107° 4.80x10° 4.60x10°° 3.00x107% 1.30x10°°
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Problem 3
Consider the stiff system

yi =-y, +95y,;y,(0)=1
y:=-y, —97y,;y,(0)=1
with the exact Solution

95 .. 48 o,
vi6) = 2o 48,

47 47
48 —96x 1 —2x
X)=——e ——e
y2(x) 47 47

Table 3: Comparison of the absolute error of the new HBDF with that of Skwame et. al. (2017a)

X Error in Skwame et. al. (2017a) Error in HBDF

K=1and p=10 K=2and p=10

yl(x) yz(x) Y1(X) yz(x)
0.1 1.74x10* 1.74%10* 7.73x10* 7.73x10*
0.2 5.40x10°% 5.30x107°® 7.74%x107° 7.74%x107°
0.3 1.00x10° 4.00x10 6.38x10°° 6.39x10°°
0.4 230x10° 3.50x10* 5.87x10° 5.87x107°
0.5 2.20x10°° 3.10x10% 4.65%x10°° 4.84%x10°8
0.6 1.80x10° 2.70x10™% 4.42x1077 4.45%x1077
0.7 1.60x10° 2.20x10™% 1.60x10°° 3.47x101°
0.8 1.40x10° 2.00x10% 1.20x10°° 3.35x10°°
0.9 1.20x10° 1.60x10* 1.80x10°° 1.60x10**
1.0 9.00x10* 1.40x10™* 2.00x10°° 8.00x10*?

It is obvious from the results displayed in the
Tables 1, 2 and 3 that the new HBDF performs
better than the existing methods with which we
compared our results. Numerical results obtained
using the proposed new HBDF show that it is the
method is reliable for the solutions of stiff
problems and compares favorably with existing
ones.

Conclusion

The approach adopted for the derivation of the
HBDF involves interpolation and collocation at
appropriate selected points. The proposed order ten
HBDF for general second order ODEs was found
to be consistent, zero-stable and convergent. It also
performed better than the methods with which we
compared our results with.
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