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Abstract 

A Hybrid Backward Differentiation Formula (HBDF) of uniform order ten is proposed for the solution of 

second order stiff Initial Value Problems (IVPs) is studied in this article. The approach adopted for the 

derivation of backward differentiation formulae involves interpolation and collocation at appropriate selected 

points. The proposed order ten HBDF for general second order ODEs was found to be consistent, zero-stable 

and convergent. Numerical evidences show that the method proposed here perform favorable when compared 

with existing scheme as it yielded better accuracy. 
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Introduction 

Most of the improvements in the class of Linear 

Multistep Methods (LMMs) have been based on 

Backward Differentiation Formula (BDF), because 

of its special properties. Among the first 

modifications introduced by different authors was 

the Extended Backward Differentiation formulas 

(EBDFs), introduced in 1980 by Cash, in which 

one-super future point technique was applied. Cash 

(1981), proposed second derivative EBDFs for the 

numerical integration of stiff systems. Also, the 

integration of stiff initial value problems in ODEs 

using modified extended backward differentiation 

formula was studied in Cash (1983). The BDFs are 

implicit linear stepk   method with regions of 

absolute stability large enough to make them 

relevant to the problem of stiffness. Backward 

differentiation methods were introduced Curtiss 

and Hirschfelder (1952), Muhammad and Yahaya 

(2012), among others. In the early 1950s, as a 

result of some pioneering work by Curtiss and 

Hirschfelder (1952), Stuart and Humphries (1996) 

realized that there was an important class of 

Ordinary Differential Equations (ODEs), which 

have become known as stiff equations, which 

presented a severe challenge to numerical methods 

that existed at that time. Since then an enormous 

amount of effort has gone into the analysis of stiff 

problems and, as a result, many numerical methods 

have been proposed for their solution. More 

recently, however, there have been some strong 

indications that the theory which underpins stiff 

computation is now quite well understood, and, in 

particular, the excellent text of Hairer and Wanner, 

(1996), has helped put this theory on a firm basis. 

As a result of this, some powerful codes have now 

been developed and these can solve quite difficult 

problems in a routine and reliable way. 

Interestingly, differential equations arising from the 

modeling of physical phenomena often do not have 

exact solutions. Hence, the development of 

numerical methods to obtain approximate solutions 

becomes necessary. To that extent, several 

numerical methods such as finite difference 

methods, finite element methods and finite volume 

methods, among others, have been developed based 

on the nature and type of the differential equation 

to be solved. 

This research focuses on developing a new HBDF 

for the solution of second order initial value 

problems of the form,  

    

      bxabxyaxyyyxfy  ,,;,, 0

'

0

'''
  (1) 

 

Block methods for solving problems of the form 

(1) have initially been proposed by Milne (1953). 

The Milne’s idea was further developed by Rosser 

(1967) for Runge-Kutta method. Also block BDFs 

are discussed and developed by many researchers, 

Jiaxiang and Cameron (1995), Ibrahim, Othman 
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and Suleiman (2007), Akinfenwa, Jator and Yoa 

(2011, 2013), Ali and Gholamreza (2011), Yahaya 

and Mohammed (2009, 2010a, 2010b), Fatunla 

(1991), Raft and Zurmi (2016), Skwame et. al. 

(2017a), Skwame, Kumleng and Bakari (2017b), 

Tumba, Sabo and Hamadina (2018), among others.  

 

Materials and Methods  

We seek an approximation of the form, 

  j
rs

j

j xxY 





1

0

     (2) 

where j are unknown coefficients to be 

determined and sandr  are the numbers of 

interpolation and collocation points respectively. 

We then construct our continuous approximation 

by imposing the following conditions, 

  1,,2,1,0,   kjxxY j

sn    (3) 

  knkn fxY  ''
   (4) 

We note that ny  is the numerical 

approximation to the analytical solution, 

      nnnnn yyxffxy ',,,  

Equations (3) and (4) lead to a system of (k+1) 

equations which is solved by Cramer’s rule to 

obtain j . Our continuous approximation is 

constructed by substituting the values of j  into 

equation (2). After some manipulation, the 

continuous method is obtained as, 

        knkn

k

j

jnj fxhyxhyxxY 





   
2

1

0

 (5) 

where      xandxx kj   ,,  are 

continuous coefficients to determined. We note that 

since the general second order ordinary differential 

equation involves the first derivative, the first 

derivative formula is given by. 

        knkn

k

j
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


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1

0

''  
 (6) 

   xxY '     (7) 

  0

' aY     (8) 

To construction the double-step implicit second 

derivative backward differentiation formulae with 

two off-grid points at interpolation and collocation, 

we use equation (5) to obtain a continuous 

step2  HBDF with the following specification, 

2,10,1  ksr . We also express 

     xandxx kj   ,, as a functions 

of t , where 
h

xx
t n
  to obtain the continuous 

form as follows: 
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where 
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Evaluating (9) at 2,
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3
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2
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 yields the second derivative HBDF as follows, 
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These four set of equations above form the new 

HBDF for the solution of problems of the form (1). 

In this section, the analysis of the basic properties 

of the newly derived HBDF shall be carried out. 

 

Analysis of Basic Properties of the New HBDF 

Order and Error Constants of the HBDF

 

Definition 1 (Lambert, 1991) 

The linear difference operator   associated with a LMM  is defined by   

 



k

j

jjj jhxyhjhxyhjhxyahxy
0

2 )('')(')((]),([                (10) 

where  xy  is an arbitrary test function and it is continuously differentiable on  ba, . Expanding 

   jhxyandjhxy  '  as Taylor series about x , and collecting common terms yields  

  )()(')(]);([ 10 xyhcxhycxychxy qq

q   (11) 

where the constant ,1,0, qCq  coefficients are given as follows 
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According to Lambert (1973), the method (5) has order p  if 

00 2110   ppp candcccc 
  

2pc
 
is the error constant, and p  is the order of the LMM. Therefore, the new HBDF is of uniform order ten, 

with error constants given by
 

 TC 991010

10 109883.1101324.1109413.9105588.8  
 

 

Consistency of the HBDF 

Lambert (1973), explained that consistency 

controls the magnitude of the local truncation error 

while zero stability controls the manner in which 

the error is propagated at each step of the 

calculation. 

 

Definition 2 (Lambert, 1973)  

A LMM  is said to be consistent if its order 1p  

According to Definition 2, the HBDF is consistent. 

 

Zero-Stability of the HBDF 

Definition 3 (Dahlquist, 1963) 

A LMM is said to be zero-stable if the first 

characteristic polynomial  r  satisfies  1zr
 
and 

if every root satisfying 1zr
 
have multiplicity not 

be greater than two. In order to find the zero-

stability of HBDF, we only consider the first 

characteristic polynomial of the method according 

to Definition 3 as follows, 
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which implies 1,0,0,0r . Hence, the HBDF is zero-stable since 1zr . 

 

Convergence of the HBDF 

Convergence is an essential property that every 

acceptable LMM must possess. According to 

Dahlquist (1963), consistency and zero-stability are 

the necessary conditions for the convergence of any 

numerical method. 

 

Theorem 1 (Dahlquist, 1963)  

The consistency and zero stability are sufficient 

condition for linear multistep method to be 

convergent. Since the HBDF is consistent and zero-

stable, it implies that the method is convergent for 

all points. 

 

Region of Absolute Stability of the HBDF 

The absolute stability region consists of the set of 

points in the complex plane outside the enclosed 

figure. The absolute stability region of backward 

difference formulae is obtained using Dahlquist 

(1963) and is shown below. 
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Figure 1: Absolute Stability Region of the HBDF 

 

Numerical Experiments 

To illustrate the performance of our proposed 

method, we will compare their performance with 

the existing methods. The problems considered are 

the ones solved by Skwame et. al. (2017a), 

Skwame, Kumleng and Bakari (2017b) and Tumba, 

Sabo and Hamadina (2018). 
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Table 1: Comparison of the absolute error of the new HBDF with those of Skwame, Kumleng and Bakari 

(2017b) and Skwame et al., (2017a) 

x  Absolute errors in of Skwame,  

Kumleng and Bakari (2017b) 

Absolute errors in of Skwame,  

et al., (2017a) 

Absolute error in HBDF 

62  pandK  101  pandK  102  pandK  

 xy1
  xy2

  xy1
  xy2

  xy1
  xy2

 

1.0

 

71061.3   
71060.3   61060.2   61060.2   91090.3   91090.2   

2.0

 

71021.3   71030.3   61042.2   61042.2   81062.1   91052.1   

3.0  71028.6   71027.3   61018.2   61018.2   81091.1   81084.1   

4.0

 

71065.5   71065.5   61090.3   61090.3   81078.2   81070.2   

5.0  71069.6   71068.6   61058.3   61058.3   81091.2   81084.2   

6.0  71003.6   71002.6   61023.3   61023.3   
81046.3   81039.3   

7.0

 

71092.5   71092.5   61035.4   61035.4   81044.3   81038.3   

8.0  71036.5   71037.5   61097.3   61097.3   81078.3   81030.3   

9.0

 

71038.7   71038.7   61059.3   61059.3   81070.3   81065.3   

0.1  71070.6   71070.6   61031.4   61030.4   81088.3   81084.3   
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Table 2: Comparison of the absolute error of the new HBDF with those of Tumba, Sabo and Hamadina (2018)  

and Skwame et. al. (2017a) 

x  Error in Tumba, Sabo and 

Hamadina (2018) 

Error in Skwame et. al. (2017a) Error in HBDF 

81  pandK  101  pandK  102  pandK  

 xy1
  xy2

  xy1
  xy2

  xy1
  xy2

 

1.0  41036.2   21023.8   
61032.1   21010.8   51082.3   21011.8   

2.0  61026.3   11032.1   
81090.1   41050.5   41022.2   31088.1   

3.0  81060.2   61095.3   91000.4   61070.3   61051.1   51027.1   

4.0  91000.5   81020.3   91000.4   81010.2   81000.7   71040.4   

5.0  91000.8   
91000.7   91000.2   91000.3   91000.1   91000.3   

6.0  91000.8   
91000.6   91000.3   91000.2   0  91000.2   

7.0  91020.7   91040.8   91050.4   91090.2   101000.3   101000.1   

8.0  91020.8   
91060.7   91010.4   

91070.3   101000.2   91050.1   

9.0  91040.8   91050.8   91060.4   91000.4   101000.4   101000.1   

0.1  91050.8   
91000.8   91080.4   

91060.4   101000.3   91030.1   
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Problem 3 

Consider the stiff system 

 

  10;97

10;95

121

1

2

121

1

1





yyyy

yyyy
 

with the exact Solution 

 

  xx

xx

eexy

eexy

296

2

962

1

47

1

47

48

47

48

47

95








 

 

Table 3: Comparison of the absolute error of the new HBDF with that of Skwame et. al. (2017a)  

x  Error in Skwame et. al. (2017a) Error in HBDF 

101  pandK  102  pandK  

 xy1
  xy2

  xy1
  xy2

 

1.0  41074.1   
41074.1   

41073.7   
41073.7   

2.0  81040.5   
81030.5   

31074.7   
31074.7   

3.0  91000.1   
111000.4   

61038.6   
61039.6   

4.0  91030.2   
111050.3   

51087.5   
51087.5   

5.0  91020.2   
111010.3   

81065.4   
81084.4   

6.0  91080.1   
111070.2   

71042.4   
71045.4   

7.0  91060.1   
111020.2   

91060.1   
101047.3   

8.0  91040.1   
111000.2   

91020.1   
91035.3   

9.0  91020.1   
111060.1   

91080.1   
111060.1   

0.1  101000.9    
111040.1   

91000.2    
121000.8   

 

It is obvious from the results displayed in the 

Tables 1, 2 and 3 that the new HBDF performs 

better than the existing methods with which we 

compared our results. Numerical results obtained 

using the proposed new HBDF show that it is the 

method is reliable for the solutions of stiff 

problems and compares favorably with existing 

ones. 

 

Conclusion  

The approach adopted for the derivation of the 

HBDF involves interpolation and collocation at 

appropriate selected points. The proposed order ten 

HBDF for general second order ODEs was found 

to be consistent, zero-stable and convergent. It also 

performed better than the methods with which we 

compared our results with. 

 

References
 

Akinfenwa, O. A., Jator S. N. & Yoa, N. M. 

(2011). An eighth order Backward 

Differentiation Formula with Continuous 

Coefficients for Stiff Ordinary Differential 

Equations.  International Journal of 

Mathematical and Computer Science, 7:171-

176. 

Akinfenwa, O. A., Jator S. N. & Yoa, N. M. 

(2013). Continuous block backward 

differentiation formula for solving stiff 

ordinary differential equations. Computers 

and Mathematics with Applications, 65:996–

1005. 

Ali, K. E. & Gholamreza, H. (2011). Hybrid 

Extended Backward Differentiation Formulas 

for Stiff Systems. International Journal of 

Nonlinear Science, 12:196-204. 

Cash, J. R. (1980). On the integration of stiff 

systems of ODEs using extended backward 

differentiation formula. Numer. Math., 

34:235-246. 

Cash, J. R. (1981) Second derivative extended 

backward differentiation formulas for the 

numerical integration of stiff systems. SIAM  

J. Numer. Anal., 18:21-36. 

Cash, J. R. (1983). The integration of stiff initial 

value problems in ODEs using modified 

extended backward differentiation formula. 

Comut. Math. Appl., 9:645-657. 



  Skwame, et. al.,  ADSUJSR, 6(2): 198-205, August, 2018 
 

205 
 

Curtiss, C. F. & Hirschfelder, J. O. (1952).  

Integration of Stiff Equations. Proc. Natl. 

Acad. Sci. USA,  pp. 235-243. 

Dahlquist, G. (1963). A Special Stability Problem 

for Linear Multistep Methods. BIT,  pp. 327-

343. 

Fatunla, S. O. (1991). Block method for second 

order differential equation. International 

Journal 

Computer Mathematics, 41:55-63. 

Hairer, E. & Wanner, G. (1996). Solving ordinary 

differential equations: Stiff and differential 

algebraic problems. 2nd edition, Springer. 

Ibrahim, Z. B., Othman, K. I., & Suleiman, M. 

Implicit r-point block backward 

differentiation formula for solving first-order 

stiff ODEs. Applied Mathematics and 

Computation, 186:558–565. 

Jiaxiang, X. & Cameron, I. T. (1995). Numerical 

solution of DAE systems using block BDF 

methods. Journal of Computation and 

Applied Mathematics, 62:255-266. 

Milne, W. E. (1953). Numerical solution of 

differential equations. John Wiley & Sons: 

New York, USA. 

Muhammad, R. & Yahaya, Y. A. (2012). A sixth 

order implicit hybrid backward differentiation 

formulae (HBDF) for block solution of 

ordinary differential equations. Amer. J. 

Math. Statistics, 2:89-94. 

Lambert, J. D. (1973). Computational Methods in 

ODEs. John Wiley and Sons: New York, NY, 

USA. 

Lambert, J. D. (1991). Numerical methods for 

Ordinary Differential Systems: The Initial 

Value Problems, John Wiley & Sons, New 

York.   

Onumanyi, P., Awoyemi, D. O., Jator S. N. & 

Sirisena U. W. (1994). New Linear Multistep 

Methods with Continous Coefficient for First 

Order Initial Value Problems. Journal of 

 the Nigerian Mathematical Society, 13:27-

51.  

Raft, A. & Zurni, O. (2016). Direct solution of 

second order ODEs using a single-step hybrid 

block method of order five. Math. and 

Comput. Appl., 21:1-7. 

Skwame, Y., Sabo, J., Tumba, P. & Kyagya, T. Y. 

(2017a). Order Ten Implicit One-Step Hybrid 

Block  Method for The Solution of Stiff 

Second-order Ordinary Differential Equations 

International Journal of Engineering and 

Applied Sciences, 4(12):43-47. 

Skwame, Y., Kumleng, G. M. & Bakari, I. A. 

(2017b). Second derivative hybrid block 

backward differentiation Formulae for 

numerical solution of stiff systems. JAMCS, 

25: 1-11. 

Stuart, A. M. & Humphries, A. R. (1996). 

Dynamical Systems and Numerical Analysis. 

Cambridge University Press, New York. 

Tumba, P., Sabo, J. & Hamadina, M. (2018). 

Uniformly Order Eight Implicit Second 

Derivative Method for Solving Second- Order 

Stiff Ordinary Differential Equations ODEs. 

 Academic Journal of Applied 

Mathematical Sciences, 4(5):43-48. 

Yahaya, Y. A. & Mohammed, U. (2009). 

Reformulation of implicit five step backward 

differentiation  formulae in continuous form 

for solution of first order initial value 

problem. Journal of General Studies, 1:134-

144. 

Yahaya, Y. A. & Mohammed, U. (2010a). Fully 

implicit three point backward differentiation 

formulae for solution of first order initial 

value problems. International Journal of 

Numerical Mathematics, 5:384-398. 

Yahaya, Y. A. & Mohammed, U. (2010b). Fully 

implicit four point block backward 

differentiation formulae for solution of first 

order initial value problems. Leonardo 

Journal of Sciences, 16:21-30. 

 


