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Abstract
This paper considers interpolation and collocation of rational approximate solution to give a continuous one step
non-linear method for the solution of stiff initial value problems. The continuous method is evaluated at selected
grid points to give discrete methods which are implemented in predictor-corrector method. The developed
methods are found to be convergent and L-stable. Numerical results show that the method is efficient in

handling stiff problems.
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Introduction

Stiff systems of ODEs are very special cases of
ODE, all the methods for approximating the
solution to IVPs have error terms that involve
higher derivative of the solution of the equation
(Lambert and Mitchell, 1962). If the derivative can
be reasonably bounded, then the method will have
a predictable error bound that can be used to
estimate the accuracy of the approximation. Even if
the derivative grows as the steps increase, the error
can be kept in relative control, provided that the
solution also grows in magnitude. Problems mostly
arise, however, when the magnitude of the
derivative increases, but the solution does not. In
this situation, the error can grow so large that it
dominates the calculations. The I1\VVPs for which this
may likely occur are called stiff equations and are
quite common particularly in the study of
vibrations, chemical reactions and electrical
circuits. Stiff systems derive their name from the
motion of spring and mass systems that have large
spring constant.

Consider the test equation

y(t)=4(t) y(0)=1 &)
for Re(ﬂ,,)<0 decay exponentially fast as

increases, how a method performs on the test
equation indicates how they will perform on more
general equations (Shampine and Thompson,
2007). For instance, Re(4)<0 for all

eigenvalues, a commonly used stiffness index is
given as

L= maxHRe(/?,, )H

This measure is extended to general differential
equations by considering eigenvalues of the local

Jacobian matrix. Where L is not invariant under a
simple rescaling of the problem. This raises the
distinction between the mathematical problem and
computational  problem. The computational
problem includes the nature of the error control and
the error tolerances. In particular, rescaling a
problem must include a corresponding change of
error control if an equivalent problem is to be
solved. An alternative measure is the ratio of the
local solution time scale to the smallest damping
time constant,

min| ——%

Re(4)

This can be more useful when some Re(4;)<O0.

The measure of stiffness is given by the stiffness
o g o MR .
ratio S=———1 (Lambert and Mitchell,
min[Re(4 | (

1962).

In this, we construct a hybrid continuous method
using Pade approximate solution which is
implemented in predictor corrector method. The
method is better than using polynomial basis
function for reasons discussed earlier. Hybrid
points and method of implementation is an
advantage in the sense of better stability properties
and increased order of the method with low
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truncation error. The computer code makes the dependent.
results more interactive and not problem
Y'(X)=F(XY), Y(X,) =1 X, SX< X @)

where f :RxR™ —R™ is a given real valued
piecewise continuous function in the interval
Xe[Xn,XN] and assumed to satisfies Lipchitz

existence and uniqueness theorem.

Despite the success recorded by linear multistep
method (LMM) in the numerical solution of initial
value problems, most of the approaches failed
when the problems are stiff, stiff oscillatory or
singular  problems.  Adoption of rational
approximate solution as basic functions which
results into non-linear method have been effective
in handling this setback, but their developments are
tedious. The better efficiency lies in the fact that
rational function of degree NxnN usually produces
or gives a better approximation than the Taylor

polynomial of degree 2n (Nis the order of the
polynomial) (Gadella and Lara, 2013). Continuous
formulation of method which enables evaluation at
all points within the interval of integration has been
well developed in construction of linear multistep
method, but the application to construction of non-
linear method has not been well established in
literature, therefore, this research extends the
continuous formulation of method to non-linear
methods.

Lambert and Shaw (1965) represented an
alternative procedure that was based on a local
representation of the theoretical solution to first
order initial value problem by specialized form of
rational function

. (X)

Y=pix @

where P, (X) is a polynomial of degree N. It was

reported that this method can handle special
singular initial value problems.

Luke et al. (1969) suggested approximate solution
in the form

S
y(X)=1+z‘&_b o

to check the setback of (1) (2) is called the

(4)

rational approximations or the Pade approximation.
The resultant algorithms are non-linear methods
which could cope with problems possessing
singularities  (Fatunla, 1988). Okosun and
Ademuliyi (2007) presented a three step method for
the numerical solution of ODEs with singularities,
the scheme was based on rational functions
approximation technique and their development
analysis is based on power series expansion and
Dalhquist stability test method which is valid to
handle ODEs with singularities due to approximate
solution used.

Mathematical Background

In this paper, we discuss the step by step approach
in the derivation of continuous formulation method
for the solution of stiff and singular problems. The

idea is to approximate the solution y(x)of (2) in
the partition 7, = [a=x, <X <:-<X, =h] of

the integration interval [a,b] by Pade

approximate solution in the form
y(x) = —ZEAX
k p
1+37 bpx

whereb, @ € R are constants to be determined to

(®)

the general first order initial value problems in the
form (2)

Derivation of Methods
Let the approximate solution be given as Pade

approximate  solution in the form (5),
K+m=s+r—1, where r and S are numbers
of interpolation and collocation points respectively.

Interpolating (5), at X, j=0,12,---,r and

collocating the first derivative of (5), at X

n+j?
j=212,---,S gives a non-linear system of
equations in the form

XA=U (6)

where
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B m
X, =X, Yn
Xna X Yna
m
X = 1 Knsr “Xoer Ynar
m-1 !
o - an+1 _( Yot Xn+1yn+l)
m-1 !
_0 e X _( Ynis T YnesXnis )

(7)is carefully chosen such that it gives a
consistent solution. We then impose the following

conditions on (5), and its first derivatives
y(XrHj): yn+j’ j :0,1,2,"',r
y’(XI’H-j): fn+j’ J :O,]_’ 2’...,5

wherer and S are the numbers of interpolation

(8)

and collocation respectively. Solving (6) for the
unknown parameters, using Crammer's method,
substituting the results into (5), and after some

algebraic sorting gives the continuous non-linear
method which is evaluated at selected grid points to
give discrete method which is implemented in
predictor corrector method.

Analysis of the Method

Definition 1. Order of the Method:

Numerical analysis is not only the formulation of
numerical methods, but also their analysis. Three
central concepts in this analysis are convergence,
rate of convergence and stability.

We associate the operator ¢ with the non-linear
method defined by

g':y(x) : h:l =Y — y(Xn+t) =0
where y(x) is an arbitrary function continuously

differentiable on [a, b] . Following Fatunla (1982),

we can write terms in (7) as a Taylor series
expansion about the point X to obtain the
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k
=X, Y,
—Xk
n+1 yn+l

k
“Xoer Yner @)

k-1 ! k
- ( kyn+1Xn+1 + yn+an+1 )

k-1 ' k
_(kyn+sxn+s + Yois Xn+s)

expansion

[ y(x) : h]=coy(X)+chy’(X)+...+Ch"YP (X)+..

where the constant coefficients, €,, p=0,1,2,...

are given as

1. 1 _
C,=— PO ——— jp‘l‘P.
" p! ,Z; : (p—l)!é :
(7) has rate of convergence p if

([y(x) : h]=0(h"*),c,=¢, =..=¢c,=0,c,, #0

Therefore C is the error constant and

p+1

C,,sn""y " is the local truncation error (LTE).

Definition 2.
and Umar, 2018)
Numerical method is said to be zero stable if

LII)T(] yn+w = yn

where W is the evaluation point.

Zero Stable (Adesanya, Pantuvo

Definition 3. Consistent (Adesanya, Fotta and
Abdulkadiri, 2015)
A numerical method is said to be consistent if

(i) it has rate of convergence p=>1

(i) Iin‘]h—>0 (%(yrww ~Yn )) = Wy;1

Definition 4. Convergent (Adesanya, Fotta and
Abdulkadiri, 2015)
A numerical method is said to be convergent
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@i lim,_, (y(x)— Y, (X)) — O where y(x) is
the exact solution and Y, (X) is the approximate

solution.
(i) it is consistent and zero stable.

Definition 5. Region of Absolute Stability
(Sunday, Adesanya and Odekunle, 2014)
Region of absolute stability is a region in the

complex Z = Ah plane, where

Z = AN . 1tis defined as those values of Z such
that the numerical solutions of y'=—AY satisfy

J>was j>oo

Specification of the Method
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Definition 6 A-Stable (Adesanya, Pantuvo and
Umar, 2018)

A numerical method is said to be A-stable if
imR(z)<1

Z—0 ( )

Definition 7. L-Stability (Philippe and

Bernard, 2006)
A numerical method is said to be L-stable if
(i) it is A-stable
(i) lim,_,,|R(z)| >0

where R(Z) is called the stability polynomial of
the method.

The points for interpolation and collocation is shown in Table 1.

Table 1: Interpolation and Collocation Points

Method IP CP EP AS
ay+ X

Corrector y,.,  Ou uv 1 825
Predictor fory,, Ou u v  2p°
Predictorfory,,, 0 0 u Tonx

IP means Interpolation points; CP means Collocation points; EP means Evaluation points; AS means

Approximate solution

Results of the Corrector Constants

2,2
Xn yn+u + h

2u2

+2hux y2,, —h%u®f

2 2 2 2
yn+u - Xn yn+u yn+v - Xn yn yn+u + Xn yn yn+v

—h%?y, Y, +hu?vif  f

n+u yn+v

f

—h*u?x y, f ., +h?v?x y f

+2h3uvf
—h3U3Xn fn+u fn+v

+2h%uvx, f

neu Ynev — h3U ZVf
—h?u®x_ f

n+u yﬂ+V

n+v

+2hVXn yn yn+v + huxr? fn+u yn+v

n+v yn+u

n+v yn+u

+huvx? f

n+u " n+v
2,.2y,2
—hux; f —2hux.y,Y..,

f

n+u "n+v

n+u " n+v

—hvx? f

n+v yn+u

f

n+u "n+v

—h*uvf
—hux?y . +hvx’y f
—hAV2X F Yo = 20VX Yo Yooy
+huv?x f

n+v

f

n "n+u "n+v
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UYL Yoy + 20X, Yo Vi = 2Y% Yooy Yoew = 20X, Y Vi Yooy
+2V%, Yo Yoo Yoew = DUZY Yoy Yooy —HUPX £ Y2
LR MRVEE RV SRVARRE TRV VAL A
A=hl +2huvx f_y2. —hu’xy f y +hvxy f
—hiudvy £ f  +2huPvy fy

—h?uvy f y . +hiuvix y f  f

—h*utvx y f. f., +2huvx y, f —2huvx,y, f

n+v yn+u

n+u

n+u yl’H—V n+v yn+u

~2UYp,, Y + 2%y Yo FUSTL Y0 VAR Y
+2UY, Yo Yo = 293 Yo Yoy — 20NUVEL Yo +0U%Y Ty
—hv?y f oy —hfuviy £ f  +hiulvy £ f

—2huvy_f .y +2huvy f

A, =h

n+v yn+u

=2%, Yo = 200Y5, + 2%V, Vo w = 2% Yo Yo + 2% Yoo Yooy
+h?u?y f  —h®Py f +2huyy . —2hvyy  +h%ulf
A= +h*?f y  +hAVAE y +2hvy y = 2h%uvf
+2hux.y. f ., —2hvx y f. —h%uv?f  f  +2h%u’x f  f
—2hux, f +2hvx, f

n+u yn+v

—2h%uvx f f

I'H—UyI‘H—V n+vyn+u n n+u "n+v

A - ~YYasw Yo Yo = Yasu Yo + Yoww —HUY, £y +hvy, £
| —h%u?f f  +huf —hvf +houvf. f

n+u "n+v n+u yn+v n+v yn+u n+u "n+v

Results for Y, ., constants

BO :(XnyrHu — XY, —h2U2 fn+u —hux, f )

n "n+u

Bl = (Xn yriru =X Y Yo — h2u2yn fn+u - hl"IXn Yn fn+u )
BZ = (_yriu +Y Yo T huyn fn+u )
BS = ( yn - yn+u + Iqufm—u )
where
B B B
aO = B—l , a1 =2 , bl =3
0 0 0
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Results for Y, constants
CO = (_Xn fn+u Yo~ hufn+u )
Cl = (_yn Yo~ huyn fn+u )

C2 - fn+u
where
C C
=L b= C_z
0 0

Results of the Continuous Method

T L T L o W o TR TR R
—he Y fosaltngn + B0 o2+ BOUPE  2000 Y
— 260y Yt ¥t — SHOU frg V2 A PO Yy Yy Yy, + DU frta it
Y Frtalints = B0 Y bt + 2000 frota¥nts — MUP0Y frta U
—h2u3'vynﬁz+ufn+v = htu2fn+uyn+uyn+v + hztuvzf;z+ufn+vyn+u
_hztuzvﬁz-&-ufn+uyn+u + 2h0uv fro Yt uYnty — hztuvzﬁwvynﬂy;.;.u
U0 oYt — 2RO Y Yo Y, — PPV Y Fr o
PPy S fato — 2PUOY Frop oo + 2HEOOY, Frg oYt
2yl A — P ntante — W nialinge — 20082 L, — Yl
YUty + 20l — 200Ynto — B ot Yniy + 2600tV
e O R R T TR
—ht0 fop oYt + 2R g o — MU0 Sy Y — h2t2u2fn+uy;+v
A Yy — MW, + B+ B
+htuty, fovn — MUY, fovn — R0VPY, frny + R0y, frey — 2h WYY

H _hzusvfn+ufn+v T }zgtusf;l+uy:z+v - hztuvgfn+vy;+u T hztguvf;z+vy:;+u .

c i
yn+t - -

—y, +VY,,, +hu’f  —huf

S yn+u
yn+t (yn ymu _ htfn j

wheret = X;X" . Evaluating the continuous method as stated in Table 1 gives

n+u

yP — [h tyr?+u _tyn You t huzyn fn+u - htuyn fn+u j
n+t
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Ut — 269y Yt + 2095 - u?
nIn+u  “YIntudntv T & n+uyn+v UWYnYn+uUntv
+hu2y3+ufn+v T hv2y721+ufn+v + 2uynyn+uyn+v i 2Uyny1z—fuy7z-:—v
“leutyyi-i—uf.’l'*—v i h'ugynyn-kvfn-{—u T hu‘gynynw\-vfn-i—u
_]w2y7zyn+ufn+v ag 2huvyn?/n+ufn+v = 2hu‘vynyn+vfn-+-u
_hzuvzynfrﬁufrﬁv 6 hgugvynﬁWuﬁwv - hgugv'ynﬁz-i—ufrﬁ—v

_h‘u2vynyn+ufn—lv o+ Qhug'vynynﬁ-vfn-.hu T h2'u2'2)2ynfn+ufn+v
Y == _ ) 2 7 (9)
UnUn+u — YnYn+v + Zuy;+u T Yn+ulntv — u-y;-}-u B yr;-}—u

— 20Ut + 20YnYntv + U Yntubnto = 20Yntanto
+R2 U fria frtw + WY frtu — BOYn o — MUYt fro
P Ygo frotu — B Y fruto — DUPYn Frpus + M0 o

—Pfops forw + B Fon H PP i Fnn — B8 fropas fp

PP VY ko — 2P0 VY g Frgu — BPURVR frpu fago

_hzuvf;1+uf;z+v + Qhu‘vyn-van-%-u + hguvi)f1z+ufn+v

y _ Vy§+u “WoYnu t huzyn fn+u B huvyn fn+u (10)
i W Wi hU2 fn+u - hUan+u
+huy_f
v :[yn Yo : Yo J )

Results of the Discrete Methods
We consider following cases

Case 1: We considered an equal interval method, thatis U=,V =2

54 ny% Yoz + 9y, ny% + 9hfn+% y;% —-63y, YoitYniz

—4h’y. foos fros —18N0Y, 0y, —BhY, f
=27y, Your ~ 27y, Youz +18yn+%yn+% +36 ny%

—18hy, fn% +18hy, fm% +2h%f  f —15hfn+%y

n+t nel
6yn yn+l - 6y;+l + hyn fn+1
Yoy = 6y, —6y_, +hf_ .

yn yn+l + % hyn fn+l
ym_; _ 3 3

3
yn +%

n+ yn+%

yn+1 =

1
N+3

Case 2: We consider an interval where the hybrid points are at middle points, thatis, U= %,V =§
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250y’ ,y .. +100y,y. , +25hf .y’ ,—350y,y .Y ..
—18h%y,f ,f ,-120hy f ,y . +15hy f .y ,

Yoa =) TigBy y —125y,y, , +25y, .y, ., + 225y, —150ny, |

+150hy, f ,+12h°f . f . +30nf .y . —110hf .y

2 3
N+g Ntg

[15yn y...—15y’ , +2hy f , }
yn+% — 5 5 5

2
N+

3 2
n+g N+

15y, =15y, ., + 2hfn+2

yn yn+2 + % hyn fn+§
yn+; — 5 5

5
yn +2

Case 3: We consider an interval where the hybrid points moves closer to the grid points, U = % V= %

4000 yé% Yoz * 450y, y;% + 800hfn+% ny%
—4450Y, Y, .+ Y, ; 294h%y L
—-1155hy, f —665hy, fn% Yoiz

—2000y, Yoz ~ 2000y, Yoz +1550yn+% Yoiz

+2450 y§+% —1050hy, fm% +1050hy, fn%
+126h*f | fn% —105hfn+% Yoz = 915hfn+%y

10

iy e
N+75 < N+15

yn+1 =

35Y1Ynis —35y;+% +6hy, f
o | 35y, -35y , +6hf

3 3
1 N+35

3
n+10

3
Y yn+% T 10 hyn fn+%

3 =
' yn+%

Results of the Stability Properties
Substituting the test equation Yy’ =AY into (9),(10) and (ll) , gives the stability function as shown in Table

2.

Table 2: Stability properties
Order LTE Cons R(z) ZS S

(-90y =20y 2y 12y, yﬁyﬁ')]

u-v+u?z—v?z
2
3 1 (u-1) (_“+3V+2“V‘4V2) ' {—uzzz—uz+2vz+uvzz—uv222+u2v22] L
Ynu % (U=3v)(2092)*~YnVa ) Vi [ (z-uz-1) ] Yo

(—v—vzz—uz+2vz+uvz)

1 2 =3(yn)*+2YnVn ' uz+1
Yniv 2 EV(U _V) A VWn (—v22:u2+1) Yn L
1112 20%0)° VoY '
yn+u 1 2 u I uyn ( U+ 1) yn L
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where

Cons — results of consistency i.e. lim, , %(ynﬂ. — yn), R(Z)— stability function, ZS — results of zero

stability i.e. lim, (ynﬂ.), S — stability, L 2L stable, LTE £ results of the local truncation error.

Numerical Examples
We consider the following problems to test the efficiency of the developed method.
Example 1: We consider the non-linear stiff system

s (er)-()

h=0.01on0 <t <7. The smaller the t, the more serious the stiffness of the system.
The exact solution

y; (x) _ exp(—2x)
¥, () exp(—x)
Source: Yatim, Ibrahim, Othman, and Suleiman (2013)

Example 2: We consider a singular problem
y'(x)=1+y*(x),y(0)=1

with the exact solution
y(x)= tan(x+%j

with singularities at X = —Z within the interval 0 < X <1
Source: Fatunla (1982)

The following notations are used in the tables abs(y— Ya )i is the absolute error for case 1=1, 2, 3 and

tt(—77) =ttx10™

Table 3: Results for Example |

N vy, Exact Computed  (|y-VY,), Computed  (|y-vy,I), Computed  (Jy-vy,l), Yatim(2013)

5y, 45400e-05 45495e—05 [9.4719e—08] 4.5457e—05 [5.674le—08] 4.5514e—05 [1.1374e—07] 2.5736e—04
y, 6.7380e—03 6.7450e-03 [7.0243e—06] 6.7422e -03 [4.2086—06] 6.7464e —03 [8.43416—06] 5.2000e —03

10 y, 2.0612e-09 2.0698e—09 [8.6012e-12] 2.0663e—09 [5.155le-12] 2.0715e—09 [1.0330e-11] 11000e—03
y, 4.5400e-05 4.5495e—05 [9.4719e—08] 4.5457e—05 [5.674le—08] 4.5514e—05 [1.1374e-07] 3.765% —04

15 y, 9.3576e-14 0.4164e-14 [5.8622¢-16] 9.3928e-14 [3.5130e-16] 9.4280e—14 [7.0412e—16] 8.5506e 05
y, 3.0590e-07 3.0686e—07 [9.5664e—10] 3.0648e—07 [5.7362e-10] 3.0705e—07 [1.1487e-09] 6.9774e—05

20 'y, 42484e-18 4.2839e-18 [3.5521e—20] 4.2696e-18 [2.1276e-20] 4.2910e—18 [4.2671e-20] 3.2882e-08
y, 2.0612e—09 2.0698e-09 [8.59856—12] 2.0663e-09 [5.1546e—12] 2.0715e-09 [1.03256—11] 1.0790e - 06

Table 4: Results for Example VIl at h =0.00125

X Exact Computed  (|y—-Y,1), Computed  (Jy-y,[), Computed (Iy=Yal), Fatunla(1982)
0.1 1.2230e+00 1.2231e+00 [6.15686705] 1.2231e+00 [2.87388705] 1.2231e+00 [7.6775e705] [1.22816702]
0.3 18958+00 1.8950e+00 [L.5689e—04] 1.8957e+00 [3.8772e—05] 1.8960e+00 [2.4915¢—04] [5.5799¢ —02]
0.5 3.4082e+00 3.4084e+00 [2.1506e—04] 3.4073e+00 [9.4300e—04] 3.4090e + 00 [7.72329—04] [2.1342e—01]
0.7 1.1681e+01 1.1674e+01 [6.5021e703] 1.1646e +01 [3.52016702] 1.1689% + 01 [7.56536703] [3.0917e+00]
0.9 -8.6876e+00 —8.6246e+00 [6.30746—02] - -
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Discussion of results
We observed that at N =20in example 1, the
error of y, and Y, incase 1are 2.7791e—20

and 3.002e — 22 respectively, while those of case
2 and case 3 for Y, and Y, are 3.8982e—-19,

4.0934e—-21 and 1.7305e-19,1.8147e—-21

respectively. Likewise, For singular problem, Table
4 shows clearly that case 1 method is suitable in
handling problems with singularity since the other
two cases fail to give results after the point of
singularity as shown in Table 4.

Moreover, the methods developed are of other
three, consistent, convergent, zero stable, linearly
stable. They are explicit method and performs well
for stiff problem which contradicts existing
literature that explicit method cannot handle stiff
problem effectively, hence the methods derived are
efficient and computationally reliable.
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