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Abstract
In this paper, a one-step algorithm is derived and implemented for third order oscillatory problems. The derivation is
carried out using the procedure of collocation and interpolation of power series basis function within a one-step
integration interval [Xn,XM].The paper also analyzed some basic properties of the algorithm derived. The results

obtained on the application of the one-step algorithm on some sampled modeled third order oscillatory problems
show that the algorithm is computationally reliable and it performed better than the ones with which we compared

our results with.
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Introduction

According to Sunday (2018), one of the most
challenging equations being encountered nowadays is
the oscillatory differential equations. This is because
their solutions are composed of smooth varying and
‘nearly periodic’ functions, i.e. they are oscillations
whose wave form and period varies slowly with time
(relative to the period), and where the solution is
sought over a very large number of cycles, Stetter
(1994). For such problems, one cannot and does not
want to follow the trajectories; instead one resort to
finding their approximate solutions or the
computation of their quasi-envelops.

Oscillatory problems have some of their Eigen values
near the imaginary axis, and their solutions are
oscillation processes with slowly varying amplitudes.
The difficulty of solving such problems is explained
by the necessity to ensure correct values of the
amplitude and phase angle over many periods.

In this research, we shall derive and implement a
one-step algorithm on third order oscillatory
problems of the form,

yr ) = FY, YL YY), V) = Yo ¥ () = Yo, ¥ () = Yo. t e[ty t, ] @)

where {; is the initial value/point, Y, is the solution

at t,, f is continuous within the interval of

integration. It is assumed that (1) satisfies the
existence and uniqueness theorem of differential
equations. It is also assumed that the solutions to
equations of the form (1) are bounded. It is important
to state that a solution Yy(t)to (1) is said to be

bounded if,
sup|y(t)] < o )

teR

It is important to state that (1) has a wide range of
applications in engineering, thermodynamics and

other real life problems. They are also applied in
studying thin-film flows Duffy and Wilson (1997),
chaotic systems Genesio and Tesi (1992),
electromagnetic waves Lee, Fudziah and Norazak
(2014), among other phenomenon.

A solution of (1) will be called oscillatory if it has
infinity of zeros in (0,0) and non-oscillatory if it
has but a finite number of zeros in this interval,
Hanan (1961). An equation is termed oscillatory if
there exists at least one oscillatory solution and non-
oscillatory if all its solutions are non-oscillatory. This
latter definition is necessary since an (1) may be both
oscillatory and non-oscillatory.



Some methods have been derived by authors to
directly solve third order differential equations of the
form (1), see the works of Adesanya, Udoh and
Alkali (2012), Majid et al. (2012), Adesanya, Udoh
and Ajileye (2013), Lee, Fudziah and Norazak
(2014), Awoyemi, Kayode and Adoghe (2014),
Mohammed and Adeniyi (2014), Yakusak, Akinyemi
and Usman (2016), etc. Direct method for solving (1)
has been reported to be more efficient than the
method of reduction to system of first order
differential equations, see Lee, Fudziah and Norazak
(2014), Adesanya, Alkali and Sunday (2014), among
others.

Definition 1
A differential equation is said to be oscillatory if,
0] all the nontrivial solution of (1) have an
infinite number of zeros (roots) on

X, £ X <00, see Kanat (2006) and

it has at least one oscillating solution,
Borowski and Borwein (2005)

(i)

Definition 2 (Lambert, 1991)
A computational method is said to be A-stable if the

whole of the left-half plane {Z:Re(Z)SO} is
contained in the region {Z:|R€(Z)|Sl}, where

R(z) is called the stability polynomial of the
method.

Derivation of the One-step Algorithm
where
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A one-step algorithm shall be derived for the
computation of third order oscillatory problems of the
form (1). Thus, we shall employ power series
approximate solution of the form,

r+s—1 i
y(t)= > a;t’
j=0
for the derivation of the one-step algorithm given by,
i)
Ao =3 U0y e[ £y, by, @)
i=0 N

®)

where I and s (3) are the numbers of collocation

and interpolation points respectively.
Equation (3) is differentiated three times and
substituted into (1), that is,

()

r+s-1

fty.y,y) = i(i-D(j-2at’?

=]

A grid of one-steplength is considered in this paper

with a constant step size h given by
h=t, —t,i=01 and offstep points at
t ,t,andt ,

Interpolating (3) at point t s—1 z § and
"t 5\5)5

1
collocating (5) at points t, , I :O(gjl, give a

system of nonlinear equation of the form,

TA=U (6)

T
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Solving (6) for a;, J =0()8 which are constants to be determined and putting back into (3) gives a one-step
continuous algorithm of the form,
L 1/1)3
YO =,y +a MY ,+a®)y +h*| Y BO, +AOF,. | s=(] 0
B n+§ 5 n+§ H n+g =0 5\5/5
where  (t), B;(t) and p(t) are expressed as functions of X with
th—g

(8)

to obtain the continuous form as follows,
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a,(t)= %(ZSXZ — 25X +6)
5

a, (t) = -25%* +20x -3
5

a,(t) = %(ZSXZ -15x+2)
5

1 (390625x° —1875000x” +3718750x° —39375000x°
ﬁ%a):<_5040000[+2397500x4—840000x3+158525x2—13320x+252j
1 (1953125x® —8750000x’ +15531250x° —13475000%°
/2(0::5040000[+5250000x4—701175x2+210700x—19068 J
1 (1953125x® —8125000x" +12906250x° —9362500x
/%(0::_2520000[+2625000x4+33825x2—71440x+11004 ]
1 (1953125x° —7500000x" +10718750x° — 6825000%°
ﬁE(D::2520000{+1750000X4—57875X2+1740x—+756 j
1 (1953125x® - 6875000% +8968750x° —5337500x° ©)
[2(0::_5040000[+1312500x4—41775x2+1000x+588 ]
1 (390625x° —1250000x” +1531250x° —875000x°
/%a)::5040000[+210000x4—6675x2+220x+84 ]

Solving (7) for the independent solution gives a continuous algorithm of the form,

v =3 Uy s {im Of,.;+0,0) f} o 1[1]3 o
i ! i=0 5\5/5
where

oba)z-éééz(ﬁzsxz—3000x7+5950x6—6300x5+3836x4—1344xﬁ

oﬁo:jL@%ﬁ—%wﬂ+wmﬁ—%uf+mwﬂ)
s 8064

5

o,(t)= (625%° —2600x’ +4130x° — 2996x° +840x*) (11)
2 4032

asﬂ)=4—§—(625xg—24OOX7+3430x6—2184x5+560xﬁ
4032

040):—~—§—(625x8—2200x7+2870x6—1708x5+420xﬁ
: 8064

o, (t) = 1 (625x® —2000x” + 2450%° —1400x° +336x")
7 8064

and t is as defined in equation (8).

171
Evaluating (10) at t = g(gjl gives a discrete one-step algorithm of the form (1) where,
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and A isa 5x5 identity matrix.
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Analysis of Basic Properties of the One-step Algorithm
Order of the One-step Algorithm

Let the linear operator /{y(t) : h} be defined on (4) when i =0 such that
IO _
rly(©:h}= AV - > ey n 9l (y,) + FCY,) )
i=0 -

From (12), expanding Ym and F(Ym) in Taylor’s series and comparing the coefficients of h gives

Hy(t) :hy=Coy(t) +Cyy' @) +...+C,hPy (1) + C,,,h*y" (1) + C, . ,h P2y P2 (1) +... (13)
Definition 3 (Lambert, 1991)

p+l p+2
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The linear operator

¢ =C=.=C,=C,,=C,,=0,C,,#0. C_;
truncation error is givenby T, hP=3y P2 () +O(hP
y p+3
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f and the associated one-step algorithm (4) are said to be of order

P

if

is called the error constant and implies that the

Comparlng the coefficients of h, the order p of the one-step algorlthm is given by p [6 6 6 6 6] and its

error

constant
[—1384ox104’-—83674x104’-21909x104‘-41032x104‘-65697x10*]T

Consistency of the One-step Algorithm

A computational method is said to be consistent if its
p=>1. The one-step algorithm derived is

consistent since it is of uniform order 6. Consistency
controls the magnitude of the local truncation error

order

is

given

by

committed at each stage of the computation, (Fatunla,

1988) .

Zero-stability of the One-step Algorithm
Definition 4 (Fatunla, 1988)

14
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A computational method is said to be zero-stable, if

every root satisfying |ZS| =1 have multiplicity not
the roots z,S=1,2,...,k of the first characteristic

exceeding the order of the differential equation. The
polynomial p(2) defined by first characteristic polynomial is given by,

p(2) =det(zA® —E) satisfies |Zs| <1 and

[10000] [00001]

z 000 -1

01000 00001 0 z 00 -1
p(z)=2|00100(-|00001|=0 0 z 0 -1|=z(z-))

00010| |000CO01) 0 0 0 z -1

100001 |[000CO01) 0 O 0 0 z-1

Thus, solving for Z in
'(z-1)=0 (a4
gives z=0, 0, 0, 0O, 1. Hence, the one-step algorithm (4) is said to be zero-stable.

Convergence of the One-step Algorithm Region of absolute stability is a region in the
Theorem 1 (Fatunla, 1988)
The necessary and sufficient conditions that a
continuous LMM be convergent are that it be
consistent and zero-stable.

complex Z plane, where z=Ah for which the
method is absolutely stable. It is defined as those
values of Zzsuch that the numerical solutions of

Thus, the computational method formulated is y"'=-4y satisfy y; -0 as j—>oo for any
convergent. initial condition.

The stability polynomial of the newly derived one-
Region of Absolute Stability of the One-step step algorithm is given by,
Algorithm

Definition 5 (Yan, 2011)

h(w) = —h“”( 1 W+ 1697 WAJ B h”[ 144761 W+ 2083381 WA]
215332031250000 5167968750000000 7751953125000000 918750000000000
_hg( 1 W+ 235831 W“j—he( 1 W+ 203113 W4j—13h3W4+W5—5W4
84000000 75600000000 26250000 126000000 60 2
(15)
On using the stability polynomial in (15), we obtain the stability region in the figure below.
yd \\
[ )
’ \ /
N\ /
N e
Figure 1: Region of absolute stability of the one-step algorithm
The region of absolute stability in Figure 1 is A- complex plane of the figure. Note that the unstable
stable, since it contains the whole of the left-half region is the exterior of the curve (when the curve is

15
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on the negative plane) while the stability region is the

Implementation of the One-step Algorithm
interior of the curve.

The one-step algorithm derived in this research can
be used to implement higher differential equations of
the form (1) without the need to reduce it to an
equivalent system of first order. For the one-step

algorithm derived which is of uniform order p =6,

we use Taylor series expansion to calculate Y, ,; and
its first, second and third derivatives up to order

p=6.
(J ) wp ), G e G o () e (Gh)°
Yorj =Y+ Jh) = y() + jhy'(t,) +——y"(t,) + 3 f, + Al f + i f+ ol f
VTR b (J) (hy° ¢, GR)* e Gh)° oo (G)°
yn+j :y(tn+Jh)=y (tn)+Jhy (tn)+ 21 f + 31 f + Al f + 5l f 6l f
Yo, =Yt + ) =y (E,) + jh, +“2!) f+(J§') f, +(JL) £ (J5h|) £+ (‘gl) fy
y;;jzy'"(tﬁjh);fn+jhfn'+(’2!) f, +(‘;) f, +(J;'l) £ 4 (J5h|) AN “:I) £

We proceed with the implementation by substituting the known values of t and Y, into the differential equations.

Then, the differential equation is differentiated to obtain the expression for higher derivatives via partial
differentiation as follows;

y"'="ftyy.y) ="

x Yoy Ty
y' = B+ (Y £, +(y ) £y + £26,, +2y ff, +2y"
oy 2y 1, 2y <016+ 1)
=D, +(f,.Jof + £, (y+f,.)

y'=foryf ey f, - ff =(£+ y Lyt i]= Df;

D f i
where p is the order of the one-step algorithm. Also, note that

D:(gﬂ,% y":y +fayij and D2 = D(D)

Results ESJ- Absolute error in Sunday (2018)
Numerical Experiments ETGS- Absolute error in Taparki, Gurah and Simon

The one-step algorithm derived in this research shall
be employed in finding approximate solutions to third
order oscillatory problems of the form (1).

The following notations shall be used in the tables
below;

(2011)

Exec. t/Sec- Execution time per seconds of the
newly derived one-step algorithm

16



Problem 1:
Consider the third order oscillatory problem of the form,

y" () =-y'®), y(0)=0,y'(0)=1y"(0) =2, t€[0.1]]

with the exact solution is given by,
y(t) =2(1—cost) +sint
Source: Sunday (2018)

Table 1: Showing the result for Problem 1

Sunday, et al., ADSUJSR, 7(1):8-20, April, 2019

t Exact Solution Computed Solution Error ESJ Exec. t/sec
0.1000 0.109825086090777 0.109825086090777 2.4980e-016 3.7470e-016 0.1513
0.2000 0.238536175112578 0.238536175112578 4.1633e-016 8.3267e-016 0.2051
0.3000 0.384847228410128 0.384847228410127 8.3267e-016 1.3878e-015 0.4818
0.4000 0.547296354302881 0.547296354302880 3.3307e-016 1.4433e-015 0.6415
0.5000 0.724260414823458 0.724260414823458 4.4409e-016 1.5543e-015 0.8017
0.6000 0.913971243575679 0.913971243575679 1.1102e-016 1.9984e-015 0.8555
0.7000 1.114533312668715 1.114533312668715 4.4409e-016 2.8866e-015 1.2963
0.8000 1.323942672205193 1.323942672205192 1.3323e-015 4.4409e-015 1.3709
0.9000 1.540106973086156 1.540106973086155 4.4409e-016 3.5527e-015 1.4627
1.0000 1.760866373071619 1.760866373071616 2.2204e-015 5.3291e-015 1.6621
Problem 2:

Consider the third order oscillatory problem of the form,

yrE) =y"®) -y )+ y), y0)=1y'(@©)=0,y"(0)=-1 h=0.01, t €[0.01,0.05]

with the exact solution is given by,

y(t) = cost

Source: Sunday (2018)

Table 2: Showing the result for Problem 2

t Exact Solution Computed Solution Error ESJ Exec. t/sec
0.0100 0.999950399610039 0.999950399610039 0.0000e+000 1.1102e-016 0.3648
0.0200 0.999800805813405 0.999800805813405 3.3307e-016 1.3323e-015  0.4203
0.0300 0.999550633459082 0.999550633459082 0.0000e+000 9.6589%e-015 1.6058
0.0400 0.999200106660978 0.999200106660978 0.0000e+000 3.2974e-014  1.7975
0.0500 0.998750260394966 0.998750260394968 1.3323e-015 8.2379e-014  1.9402
Problem 3:

Consider the third order oscillatory problem of the form,
y"'(t) =3sint, y(0)=1y'(0)=0,y"(0)=-2, t€[0.1, 1]
with the exact solution is given by,

y(t) :3cost+%—2

2

Source: Sunday (2018)

17
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Table 3: Showing the result for Problem 3

t Exact Solution Computed Solution Error ESJ Exec. t/sec
0.1000 0.990012495834077 0.990012495834077 3.3307e-016 4.6185e-014 0.0427
0.2000 0.960199733523725 0.960199733523725 3.3307e-016 1.8563e-013 0.0482
0.3000 0.911009467376818 0.911009467376818 3.3307e-016 4.1578e-013 0.0537
0.4000 0.843182982008655 0.843182982008655 1.1102e-016 7.3574e-013 0.0592
0.5000 0.757747685671118 0.757747685671118 1.1102e-016 1.1424e-012 0.0647
0.6000 0.656006844729034 0.656006844729035 4.4409e-016 1.6327e-012 0.0701
0.7000 0.539526561853465 0.539526561853465 5.5511e-016 2.2020e-012 0.1481
0.8000 0.410120128041496 0.410120128041496 5.5511e-016 2.8458e-012 0.2267
0.9000 0.269829904811993 0.269829904811993 7.2164e-016 3.5596e-012 0.4018
1.0000 0.120906917604418 0.120906917604419 1.0547e-015 4.3369e-012 0.4075
Problem 4:
Consider the third order oscillatory problem of the form,
y"(t)=—-4y't)+t, y(0)=y'(0)=0,y"(0) =1 t<[0.1]]
with the exact solution is given by,

3 1
y(t) =| = |@-cos2t)+| = ft?
16 8

Source: Sunday (2018)
Table 4: Showing the result for Problem 4

t Exact Solution Computed Solution Error ESJ Exec. t/sec
0.1000 0.004987516654767 0.004987516654768 1.2854e-015 8.3209e-013 0.2015
0.2000 0.019801063624459 0.019801063624469 9.5410e-015 3.4752e-012 0.2074
0.3000 0.043999572204435 0.043999572204466 3.0732e-014 7.8178e-012 0.2136
0.4000 0.076867491997407 0.076867491997476 6.9889e-014 1.3681e-011 0.2195
0.5000 0.117443317649724 0.117443317649855 1.3059e-013 2.0825e-011 0.2254
0.6000 0.164557921035624 0.164557921035838 2.1452e-013 2.8962e-011 0.2313
0.7000 0.216881160706205 0.216881160706527 3.2155e-013 3.7764e-011 0.2371
0.8000 0.272974910431492 0.272974910431941 4.4914e-013 4.6879-011 0.2430
0.9000 0.331350392754954 0.331350392755547 5.9286e-013 5.5941e-011 0.2488
1.0000 0.390527531852590 0.390527531853336 7.4624e-013 6.4592e-011 0.2546
Problem 5:

Consider the third order oscillatory problem of the form,
y'"'(t)=cost, y(0)=1 y'(0)=0, y"(0)=2, t<[0.1]]
with the exact solution is given by,

y(t) =t* +3t+1-3sint
Source: Taparki, Gurah and Simon (2011)
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Table 5:

Showing the result for Problem 5

Sunday, et al., ADSUJSR, 7(1):8-20, April, 2019

t

Exact Solution

Computed Solution

Error

ETGS

Exec. t/sec

0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

1.010499750059516
1.043992007614816
1.103439380015981
1.191744973074049
1.311723384187391
1.466072579814895
1.657346938286928
1.887931727301432
2.160019271117552
2.475587045576313

1.010499750059516
1.043992007614818
1.103439380015982
1.191744973074050
1.311723384187391
1.466072579814894
1.657346938286926
1.887931727301430
2.160019271117549
2.475587045576309

2.2204e-016
1.1102e-015
4.4409e-016
6.6613e-016
2.2204e-016
1.3323e-015
2.4425e-015
2.4425e-015
3.5527e-015
3.9968e-015

2.4800000 e-007
7.3740000 e-006
6.0542000 e-005
2.5478700 e-004
7.7601600 e-004
1.9261250 e-003
4.1505400 e-003
8.3637340 e-003
1.4773750 e-002
2.4701998 e-002

0.0374
0.0433
0.0487
0.1264
0.1725
0.2828
0.3837
0.4474
0.5393
0.5447

Discussion of Result

The results obtained in Tables 1-5 clearly show that
the one-step algorithm derived is computationally
reliable and efficient. This is because the computed
solution matches the exact solution. In fact, the
method obviously performed better than the ones
with which we compared our results. The algorithm
is also efficient because from the tables, the
execution times per seconds are very small. This
shows that the algorithm generates results very fast.
Thus, there is economy of time in the computation.

Conclusion

A computationally reliable one-step algorithm for the
solution of third order oscillatory problems of the
form (1) has been derived in this research. The results
obtained on the application of the algorithm show
that it is highly efficient. The paper also analyzed
some basic properties of the algorithm which include
order, convergence, consistence, zero-stability and
region of absolute stability. This analysis further
buttresses the fact that the newly derived one-step
algorithm can handle the differential equations for
which it was designed.
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