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ABSTRACT 

Description of circuits using differential equations is very convenient for the 

electrical circuits’ behavioral analysis. In this paper, a one-step fifth-order 

computational method is proposed for the solution of second order differential 

equations using the Hermite polynomial as a basis function. The computational 

method was then applied on two real-life problems in physics to determine the 

charge on the capacitors and from the results obtained, it is obvious that the method 

is computationally reliable. The basic properties of the method were further 

investigated and found to be zero-stable, consistent and convergent.  
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Introduction 

A number of problems in science and technology can be formulated into 

differential equations. The analytical methods of solving differential equations are 

applicable to a limited class of equations. Quite often differential equations 

appearing in physical problems do not have exact solutions and one is obliged to 

resort to computational methods to solve such problems.  

In this paper, a one-step computational method for the determination of 

charge on capacitors occurring in the form of second order differential equations of 

the form shall be proposed, 

0 0 0 0'' ( , , '), ( ) , '( ) 'y f x y y y x y y x y              (1) 

where f  is continuous within the interval of integration. 

 Direct methods for the solution of higher-order Ordinary Differential 

Equations (ODEs) have been proposed by many authors and they concluded that 

direct methods are more convenient and accurate than the method of reduction to 

systems of first order ODEs (Awoyemi, 2008). Some of the authors that proposed 

direct methods include Adesanya et al., (2008), Awoyemi (2001), to mention a few. 

These authors proposed continuous implicit linear multistep methods which were 

implemented in predictor-corrector mode where they developed reducing order 

predictors to implement the corrector. Adesanya et al., (2012) reported that one of 

the setbacks of predictor-corrector method is that it is very costly to implement as 

subroutine are very complicated to write because it requires special technique to 

supply the starting values and varying step size leads to longer computer time and 

human efforts. Above all, the predictors are in reducing order; hence it affects the 

accuracy of the method. Awoyemi (1999) reported that continuous linear multistep 
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method has greater advantages over the discrete method in that it gives better error 

estimation, provide a simplified coefficient for further analytical work at different 

points and guarantee easy approximation of solution at all interior points within the 

interval of integration.  

 Scholars later developed block methods to cater for some of the setbacks of 

predictor-corrector methods mentioned above. Block method generates independent 

solution at selected grid point without overlapping. It is less expensive in terms of 

the number of function evaluation compared to predictor-corrector method; 

moreover, it possesses the properties of Runge-Kutta method for being self-starting 

and does not require starting values. Some of the authors that proposed block 

methods using different approximate solutions are Awoyemi (2008), Anake et al., 

(2012), Owolabi (2012), James et al., (2013), Sunday et al., (2013), Adesanya et al., 

(2014), Sunday et al., (2014a), Sunday et al., (2014b), Sunday et al., (2015a), 

Sunday et al., (2015b), Sunday et al., (2015c), Sunday et al., (2015d),  among 

others. 

 

An Overview of Electrical Circuits 

Electrical circuits are described by differential equations for time-dependent 

elements (capacitors, inductances) together with equations for linear and non-linear 

time-independent elements (resistors, diodes and transistors). Well-known Ohm's 

and Kirchhoff's laws are part of the electronic circuit description. 

    Equations of the form (1) are applicable to series circuits containing an 

electromotive force (emf), resistors, inductors and capacitors. It is important to note 

that the emf voltage denoted by E  is measured in volt (V), current i  is measured in 

ampere, charge q  is measured in coulomb, resistance R  is measured in ohm ( ),  

inductance, L  is measured in Henry (H) and capacitance, C  is measured in Farad. 

    Electromotive force (for example, a battery or generator) produces a flow of 

current in a closed circuit and that this current produces a so called voltage drop 

across each resistor, inductor and capacitor, Raisinghania (2014). 

    We state below the three important laws concerning voltage drop across resistor, 

inductor and capacitor. 

Law 1: The voltage drop RE  across a resistor is given by  

 RE Ri   (2) 

where R  is a constant of proportionality called resistance and i  the current. 

 Law 2: The voltage drop LE  across an inductor is given by, 

 L

di
E L

dt

 
  

 
  (3) 

where L  is a constant of proportionality called inductance. 

Law 3: The voltage drop CE  across a capacitor is given by, 

 C

q
E

C
   (4) 
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where C  is a constant of proportionality called capacitance and q  is instantaneous 

charge on the capacitor.    

The fundamental law in the study of electric circuits is the following. 

 Law 4 (The Kirchhoff's Voltage Law): The sum of the voltage drops across 

resistors, inductors and capacitors is equal to the total emf in a closed circuit. 

Thus, the relationship between Law 4 and Laws 1, 2 and 3 is given by, 

 
di q

L Ri E
dt C

 
   

 
 (5) 

 containing two dependent variables i  and q . But, we also have,                

 
dq

i
dt

 , so that 

2

2

di d q

dt dt
     (6) 

Using (6), (5) takes the form, 

 

2

2

d q dq q
L R E

dt dt C

   
     

  
  (7) 

which is a second-order linear differential equation in the single independent 

variable q . It is important to note that equation (7) is of the form (1).  

 

 

Derivation of the One-Step Computational Method 

We shall derive the one-step computational method (using the Scientific Workplace 

5.5 software) for the determination of charge on capacitors using the Hermite 

polynomial basis function of the form 

 
2 2

6
2 3 4 5 6

0

( ) 1 109 110 676 152 464 35 64
n

n x x

n
n

d
y x e e x x x x x x

dx





            (8) 

Interpolating (8) at 
1 1

, ,
4 2

n sx s   and collocating its second derivative at 

1
, 0 1

4
n rx r

 
  

 
 ( s and r  are the numbers of interpolation and collocation points 

respectively) gives a system of non linear equation of the form, 

XA U         (9) 
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where  

 0 1 2 3 4 5 6 1 1 1 1 3 1

4 2 4 2 4

,

T

T

n n
n n n n n

A a a a a a a a U y y f f f f f 
    

 
   

 
  

and

2 3 4 5 6

1 1 1 1 1 1

4 4 4 4 4 4

2 3 4 5 6

1 1 1 1 1 1

2 2 2 2 2 2

2 3 4

2 3 4

1 1 1 1

4 4 4 4

109 110 676 152 464 35 64

109 110 676 152 464 35 64

0 0 1352 912 5568 700 1920

0 0 1352 912 5568 700 1920

0 0 1352

n n n n n n

n n n n n n

n n n n

n n n n

x x x x x x

x x x x x x

x x x x

X x x x x

     

     

   

  

  

 

  

2 3 4

1 1 1 1

2 2 2 2

2 3 4

3 3 3 3

4 4 4 4

2 3 4

1 1 1 1

912 5568 700 1920

0 0 1352 912 5568 700 1920

0 0 1352 912 5568 700 1920

n n n n

n n n n

n n n n

x x x x

x x x x

x x x x

   

   

   

 
 
 
 
 
 
 
 
 
 
  
 
 

  
 
   
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Solving (9), for ' , 0(1)6ja s j   using Gaussian elimination method and 

substituting into (8) gives a continuous hybrid linear multistep method of the form, 
1

2

1 1 1 1

04 4 2 2

1 1 3
( ) ( ) ( ) , , ,

4 2 4
j n j k n k

n n
j

y x y y h x f x f k    
 



 
     

 
         (10) 

The coefficients of 
1 1 1

, , , 0 1
4 2 4

n j n jy j and f j 

 
   

 
 give, 

 

 

 

1

4

1

2

6 5 4 3 2

0

6 5 4 3

1

4

6 5 4 3

1

2

6 5 4 3

3

4

2 4

4 1

1
4096 15360 22400 16000 5760 962 57

11520

1
4096 13824 16640 7680 882 153

2880

1
4096 12288 12160 3840 66 7

1920

1
4096 10752 8960 2560

2880

t

t

t t t t t t

t t t t t

t t t t t

t t t t













 

 

      

      

     

     

 6 5 4 3

1

70 3

1
4096 9216 7040 1920 54 3

11520

t

t t t t t

















 


     


      (11) 

where ( )nt x x h  , ( )n j ny y x jh    and  

 ( ), ( ), '( )n j n n nf f x jh y x jh y x jh     .  

Solving (10) for the independent solution at the grid points gives the continuous 

block method, 

 
( )

1 1
( ) 2

0 0

1 1 3
( ) ( ) , , ,

! 4 2 4

m

m

n j n j k n k

j j

jh
y x y h x f f k

m
  

 

 
    

 
        (12) 

The coefficients of n j n kf and f   give, 
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 

 

 

 

 

5 4 3 2

0

5 4 3 2

1

4

5 4 3 2

1

2

5 4 3 2

3

4

5 4 3 2

1

1
192 600 700 375 90

90

1
384 1080 1040 360

45

1
192 480 380 90

15

1
384 840 560 120

45

1
192 360 220 45

90

t t t t t

t t t t

t t t t

t t t t

t t t t












     




     



    



     


   


   (13) 

Evaluating (12) at 
1 1

1
4 4

t
 

  
 

 gives a discrete one-step computational block 

method as, 

     
1

(0) ( ) ( ) 2 2

0

, 0,1i i i

m i n i n i m

i

A Y h e y h d f y h b f Y i


            (14) 

where  

1 1 3 1 1 1 3 1

4 2 4 4 2 4

, ( )

T T

m n m n
n n n n n n

y y y y f f f f f 
     

   
    
   

Y Y  

 ( ) ( ) ( ) ( ) ( )

1 2 3 1 2 3, ( )
T Ti i i i i

n n n n n n n n n ny y y y f f f f f     
   y y  

and 
(0) 4 4A    identity matrix. 

When 0:i   

0 1 0 0

367 3 147 29 7
1 0 0 0

0 0 0 23040 128 3840 3760 7680
40 0 0 1 53 1 1 1 1
1 0 0 0

0 0 0 1 0 0 0 1440 10 48 90 480
, , ,2

0 0 0 1 147 117 27 3 9
3 0 0 0

0 0 0 2560 640 1280 128 2560 0 0 1
4

7
0 0 0 1 0 0 0

90

e e d b

  
   
   

      
     
       
     
          

    
 

0

4 1 4
0

15 15 45

 
 
 
 
 
 
 
 
 
 
 

 

When 1:i   
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1 1 1

251 323 11 53 19
0 0 0

2880 1440 120 1440 2880
0 0 0 1 29 31 1 1 1

0 0 0
0 0 0 1 360 90 15 90 360

, ,
0 0 0 1 27 51 9 21 3

0 0 0
320 160 40 160 3200 0 0 1

7 16 2 16 7
0 0 0

90 45 15 45 90

e d b

    
   
   

     
 

   
      
     
 

    
   
   
   

 

 

Analysis of Basic Properties of the Computational Method 

Order of the One-Step Computational Method 

Let the linear operator  ( );L y x h  associated with the discrete computational block 

method (14) be defined as, 

   
1

(0) ( ) ( ) 2

0 0

0

( ); ( ) ( )i i i

m i n n m

i

L y x h A h e y h d f y b F


   Y Y       (15) 

Expanding (15) in Taylor series and comparing the coefficients of h  gives,  

 

  2 1 1 2 2
0 1 2 1( ); ( ) '( ) ''( ) ... ( ) ( ) ( )...p p p p p p

p p pL y x h c y x c hy x c h y x c h y x c h y x c h y x   
                 (16) 

  

Definition 1 (Lambert, 1973):  The linear operator L  and the associated block 

formula (14) are said to be of order p if   

0 1 2 1 2... 0 0.p p pc c c c c and c          

2pc   is called the error constant and implies that the local truncation error is given 

by, 
( 2) ( 2) 3

2 ( ) ( )p p p
pn kt c h y x O h  
            (17) 

  

Expanding the newly derived computational method in Taylor series and comparing 

the Coefficients of h  gives 
0 1 2 3 4 5 6

0c c c c c c c        and the error 

constant is given by  

7

7 6 6 66.4790 10 1.5501 10 2.4523 10 3.1002 10
T

c            

 

Therefore, the one-step computational method is of uniform fifth order. 

Zero Stability of the One-Step Computational Method 

Definition 2 (Fatunla, 1988): The block method (14) is said to be zero-stable, if the 

roots , 1,2,...,sz s k  of the first characteristic polynomial ( )z  defined by 

(0)

0( ) det( )z zA e    satisfies 1sz   and every root satisfying 1sz   have 
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multiplicity not exceeding the order of the differential equation. Moreover, as 

0,h   ( ) ( 1)rz z z     where   is the order of the differential equation, r  is 

the order of the matrices 
(0)

0A and e , see Awoyemi (1999) for details.  

For our computational method, 

 

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1
( ) 0

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

z z

   
   
     
   
   
   

        (18) 

3

1 2 3 4( ) ( 1) 0, 0, 1z z z z z z z         . Hence, the computational method 

is zero-stable. 

 

Consistency of the One-Step Computational Method 

The computational block method (14) is consistent since it has order 5 1p   . 

 

Convergence of the One-Step Computational Method 

The computational method is convergent by consequence of Dahlquist theorem 

stated below. 

 

 Theorem 1 (Dahlquist, 1956): The necessary and sufficient conditions that a 

continuous LMM be convergent are that it be consistent and zero-stable.  

 

Region of Absolute Stability of the One-Step Computational Method 

 Definition 3 (Yan, 2011): Region of absolute stability is a region in the complex z  

plane, where z h . It is defined as those values of z  such that the numerical 

solutions of   ''y y   satisfy 0jy as j   for any initial condition. 

We shall adopt the boundary locus method to determine the region of absolute 

stability of the computational method. This gives the stability polynomial, 

 

8 3 4 6 4 3

4 4 3 2 4 3 4 3

7 521 7019 1272109
( )

3686400 1848115200 554434560 249495520

5309 349109 5 59
2

34652160 10395648 12 96

h w h w w h w w

h w w h w w w w

   
       

   

   
        

   

    (19) 

 

This gives the stability region shown in the figure below. 
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Figure 1: Absolute Stability Region of the One-Step Computational Method 

 

By virtue of the figure obtained above, the stability region is A-stable; see Lambert 

(1973) for details. 

 

Numerical Implementation and Results 

We shall test the performance of the one-step fifth-order computational 

method developed on two problems in electricity that has to do with the 

determination of charge on capacitor. The following notations shall be used in the 

tables below; 

ERR - |Exact Solution - Computed Solution| 

t - Time 

q - Charge on capacitors 

EvlTime  - Evaluation time per seconds 

 

The results for the problems to be considered below were programmed using 

MATLAB software version R2010a. 

 

Numerical Experiments 

Problem 5.1  

An RCL circuit connected in series has resistance 180R   , capacitance 

1 280C Farads , inductance 20L H  and an applied voltage 10sinE tV . 

Assuming no initial charge q  on the capacitor, but an initial current i  of 1ampere  

at time 0t   when the voltage is first applied. Compute the subsequent charge on 

the capacitor for :0.10 1.00t t  . 

Source: Bronson and Costa (2006) 
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The first thing we do is to model this electrical circuit problem into a 

mathematical equation in the form of differential equation of the form (1) using (7) 

and then apply our method to compute the charge on the capacitor.  

Thus, problem 5.1 boils down to; 

 
2

2

1
9 14 sin , (0) 0, '(0) 1

2

d q dq
q t q q

dt dt
        (20)   

 

The exact solution of (20) is given by, 

 2 71
( ) 110 101 13sin 9cos

500

t tq t e e t t         (21) 

 

Problem 5.2 

A circuit has in series an emf given by 100sin 60E tV , a resistor of 2 , an 

inductor of 0.1H  and a capacitor of 1 260 Farads . If the initial current and the 

initial charge on the capacitor are both zero, find the charge on the capacitor at time 

:0.01 0.10t t   using a computational method.  

Source: Raisinghania (2014) 

The initial value problem modeling this problem is given by, 

 
2

2

1
2 260 100sin 60 , (0) '(0) 0

10

d q dq
q t q q

dt dt

 
     

 
  (22)   

 

The exact solution of (22) is given by, 
10( ) 0.77 cos(50 0.88) 0.64cos(60 0.69)tq t e t t       (23) 
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Table 1: Result for Problem 5.1 for Charge in Coulomb against Time in Seconds 

 

      t         Exact Solution ( )q              Computed Solution ( )q         ERR                      EvlTime  

0.1000 0.0644961281691044 0.0644960195589181 1.086102e-007  0.0237     

0.2000 0.0851820276111654 0.0851832385433017 1.210932e-006  0.0246    

0.3000 0.0864898300025174 0.0864921392030200 2.309201e-006  0.0250    

0.4000 0.0801145184634677 0.0801173973115906 2.878848e-006  0.0255    

0.5000 0.0715021834960916 0.0715051970208783 3.013525e-006  0.0259    

0.6000 0.0630582833428447 0.0630611589471033 2.875604e-006  0.0264    

0.7000 0.0557296227838859 0.0557322207776341 2.597994e-006  0.0269    

0.8000 0.0497808030832333 0.0497830714246147 2.268341e-006  0.0273    

0.9000 0.0451723420652318 0.0451742794578643 1.937393e-006  0.0278    

1.0000 0.0417423662543916 0.0417439972971136 1.631043e-006  0.0283 

   

 

Table 2: Result for Problem 5.2 for Charge in Coulomb against Time in Seconds 
 

     t       Exact Solution ( )q   Computed Solution ( )q          ERR                       EvlTime  

0.0100  0.0096139444011168 0.0092268210692248  3.871233e-004 0.0610    

0.0200  0.0673325959198382 0.0639508054908489  3.381790e-003 0.0897    

0.0300  0.1796773416745667 0.1745050920113608  5.172250e-003 0.1182    

0.0400  0.3136788440022684 0.3083558886639525  5.322955e-003 0.1464     

0.0500  0.4081975148968703 0.4042992545051606  3.898260e-003 0.1673     

0.0600  0.4023205217714867 0.4008943839633463  1.426138e-003 0.1681    

0.0700  0.2655317378057003 0.2668092880067653  1.277550e-003 0.1686    

0.0800  0.0167293959285759 0.0200983244758342  3.368929e-003 0.1690    

0.0900 -0.2763823644829858 -0.2721442460399023 4.238118e-003 0.1695    

0.1000 -0.5182689341485450 -0.5145781339107192 3.690800e-003 0.1700 

    

Discussion of Results 

From the results obtained in Tables 1 and 2 above, it is clear that the 

computational method derived is convergent because the computed solutions agree 

with the exact solutions. Thus, at a particular time t , one is able to know the charge 

q  that is on the capacitor in the circuit. The evaluation time per seconds 

( EvlTime ) in Tables 1 and 2 are also seen to be very small; implying that the 

computational method generates results very fast. Therefore, this method has a 

greater advantage over manual computations where one has to spend hours before 

computing the results. 

 

Conclusion 

We developed a one-step fifth-order computational method for determining 

the charge on capacitors in closed circuits. From the results obtained, it is obvious 

that the method is computationally reliable. The method has also been shown to be 

convergent, consistent and stable. Furthermore, the stability region of the method 

shows that it is A-stable; implying that it can efficiently cope with oscillatory and 

stiff problems. Finally, it is important to state that this method does not only 

compute charge on capacitors but can efficiently solve any real-life problem that 
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can be modeled into second order differential equation of the form (1) be they linear 

or non-linear.  
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