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Abstract 

This paper aimed at constructing new group presentations from known presentations using direct product of two or 

more groups. We established the fact that for any prime number p > 2 and any positive integer n, |U(p
n
)| = |U(2p

n
)| 

and then used symmetries to construct groups and their respective subgroups, characteristics and the unique 

factorization of the elements. Functions fi on finite group G such that each fi is a morphism are constructed and the 

fact that if G is any finite Abelian group, H a subgroup of G, then the factor group G/H is a finite Abelian group is 

proved. We finally established that if |G| = n such that n = rst, then G  Zr  Zs  Zt where r,s,tZ
+
 and then 

identify some homomorphism and automorphism on finite groups by listing all the possible maps from the group to 

itself with the help of GAP. 
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Introduction 

In mathematics, one can often define a direct product 

of objects already known, giving a new one. This 

generalizes the Cartesian product of the underlying 

sets, together with a suitably defined structure on the 

product set. More abstractly, one talks about the 

product in category theory, which formalizes these 

notions. Examples are the product of sets, groups, the 

product of rings and of other algebraic structures. We 

limit ourselves to product in groups. 

In group theory, direct product is an operation that 

takes two groups K and H and constructs a new 

group, usually denoted K  H. This operation is the 

group-theoretic analogue of the Cartesian product of 

sets and is one of several important notions of direct 

product in mathematics. 

In the context of Abelian groups, the direct product is 

sometimes referred to as the direct sum, and is 

denoted K ⊕ H (Herstein, 1996). Direct sums play an 

important role in the classification of Abelian groups: 

according to the fundamental theorem of finite 

Abelian groups, every finite Abelian group can be 

expressed as the direct sum of cyclic groups. 

An Abelian group (G, +) is called finitely generated 

if there exist finitely many elements x1, x2 ..., xr in G 

such that every x in G can be written in the form 

rr xnxnxnx  ...2211
 with integers n1, n2,  

 

..., nr. In this case, we say that the set {x1, ..., xr} is a 

generating set of G or that x1, ..., xr generate G 

(Dummit, 2004). Clearly, every finite Abelian group 

is finitely generated. The finitely generated Abelian 

groups are of a rather simple structure and can be 

completely classified. Examples of some groups that 

are finitely generated are the group of integers (Z, +), 

the group of integers modulo n (Zn, +), e.t.c. Again, 

any direct sum of finitely many finitely generated 

Abelian groups is again a finitely generated Abelian 

group and every lattice forms a finitely generated free 

Abelian group. Some groups that are not finitely 

generated are (Q, +) of rational numbers and (Q*, ) 

of non-zero rational numbers. The groups of real 

numbers under addition (, +) and real numbers 

under multiplication (, ×) are also not finitely 

generated (Lang, 2002). 

The fundamental theorem of finitely generated 

Abelian groups is viewed in two different ways; The 

first aspect is the Primary decomposition formulation 

which states that every finitely generated Abelian 
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group G is isomorphic to a direct sum of primary 

cyclic groups and infinite cyclic group. A primary 

cyclic group is one whose order is a power of a 

prime. That is, every finitely generated Abelian group 

is isomorphic to a group of the form

tqq

n ZZZ  ...
1

 where the rank n ≥ 0, and 

the numbers q1, ..., qt are powers of (not necessarily 

distinct) prime numbers. In particular, G is finite if 

and only if n = 0. The values of n, q1, ..., qt are (up to 

rearranging the indices) uniquely determined by G. 

The second aspect is the Invariant factor 

decomposition. We can also write any finitely 

generated Abelian group G as a direct sum of the 

form 
ukk

n ZZZ  ...
1

 where k1 divides k2, 

which divides k3 and so on up to ku. Again, the rank n 

and the invariant factors k1, ..., ku are uniquely 

determined by G (here with a unique order). 

Preliminaries 

Group Homomorphism 

Given two groups (G, ∗) and (H, ·), a group 

homomorphism from (G, ∗) to (H, ·) is a function  : 

G → H such that for all x and y in G we have (x  y) 

= (x)  (y) where the group operation on the left 

hand side of the equation is that of G and on the right 

hand side that of H. From this property, one can 

deduce that  maps the identity element eG of G to 

the identity element eH of H, and it also maps 

inverses to inverses in the sense that (x
-1

) = (x)
-1

. 

Hence one can say that  "is compatible with the 

group structure". Older notations for the 

homomorphism (x) may be x, though this may be 

confused as an index or a general subscript. A more 

recent trend is to write group homomorphism on the 

right of their arguments, omitting brackets, so that 

(x) becomes simply x. In areas of mathematics 

where one considers groups endowed with additional 

structure, a homomorphism sometimes means a map 

which respects not only the group structure (as 

above) but also the extra structure. For example, a 

homomorphism of topological groups is often 

required to be continuous. 

Image and Kernel of Homomorphism 

The kernel of a homomorphism  is the set of 

elements in G which are mapped to the identity in H, 

i.e. 

 Ker() = {u  G | (u) = eH}, 

and the image of  is defined as 

 Im() = (G) = {(u) : uG}. 

The kernel and image of a homomorphism can be 

interpreted as measuring how close it is to being an 

isomorphism. The First Isomorphism Theorem states 

that the image of a group homomorphism, (G) is 

isomorphic to the quotient group G/ker . The kernel 

of  is a normal subgroup of G and the image of  is 

a subgroup of H, for given g  G and h  Ker(), we 

have 

 (g
-1

hg) = (g
-1

)(h)(g) = (g)
-1(h)(g) = (g)

-1
eH(g) = (g)

-1(g) = eH. 

If and only if ker() = {eG}, the homomorphism, , is 

a group Monomorphism, i.e.,  is injective. Injection 

directly gives that there is a unique element in the 

kernel, and a unique element in the kernel gives 

injection such that for all x,yG, 

  

(x) = (y) iff (x)  (y)
-1

 = eH iff (xy
-1

) = eH, Ker() = {eG}, iff xy
-1

 = eG iff x = y. 

 

Some of the common examples are as follows: 

Consider the cyclic group Z/3Z = {0, 1, 2} and the 

group of integers Z with addition. The map :Z → 

Z/3Z with (x) = x mod 3 is a group homomorphism. 

It is surjective and its kernel consists of all integers 

which are divisible by 3. Also the multiplicative 

group of positive real numbers (
+
, ⋅), for any 

complex number c, the function fc : R
+
 → C defined 

by: c(x) = x
c
 is a group homomorphism. The 

exponential map also yields a group homomorphism 

from the group of real numbers  with addition to 

the group of non-zero real numbers * with 

multiplication. The kernel is {0} and the image 

consists of the positive real numbers. 

We also note that if :G → H and :H → K are group 

homomorphisms, then so is their composition ∘:G 

→ K.  
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This shows that the class of all groups, together with 

group homomorphisms as morphisms, forms a 

category. In case of Abelian groups, if G and H are 

Abelian groups, then the set Hom(G, H) of all group 

homomorphisms from G to H is itself an Abelian 

group, where the sum  +  of two homomorphisms 

is defined by 

 + )(x) = (x) + (x) for all xG. 

The commutativity of H is needed to prove that  +  

is again a group homomorphism. 

The addition of homomorphisms is compatible with 

the composition of homomorphisms in the following 

sense: if  is in Hom(K, G), ,  are elements of 

Hom(G, H), and  is in Hom(H, L), then 

( + ) ∘  = ( ∘ ) + ( ∘ )    and     ∘ ( + ) = 

( ∘ ) + ( ∘ ). 

Since the composition is associative, this shows that 

the set End(G) of all endomorphisms of an Abelian 

group forms a ring, the endomorphism ring of G. For 

example, the endomorphism ring of the Abelian 

group consisting of the direct sum of m copies of 

Z/nZ is isomorphic to the ring of m-by-m matrices 

with entries in Z/nZ. The above compatibility also 

shows that the category of all Abelian groups with 

group homomorphisms forms a pre-additive 

category; the existence of direct sums and well-

behaved kernels makes this category the prototypical 

example of an Abelian category (Dummit, 2004). 

Group Isomorphism 

In group theory, a group isomorphism is a function 

between two groups that sets up a one-to-one onto 

correspondence between the elements of the groups 

in a way that respects the given group operations. If 

there exists an isomorphism between two groups, 

then the groups are said to be isomorphic. From the 

standpoint of group theory, isomorphic groups have 

the same properties and need not be distinguished. 

We therefore formulate the definition as follows: 

Given two groups (G, ∗) and (H,), a group 

isomorphism from (G, ∗) to (H, ) is a bijective group 

homomorphism from G to H. That is, a group 

isomorphism is a bijective function :GH such that 

for all x and y in G, we have (x  y) = (x)  (y). 

The two groups (G, ∗) and (H, ) are isomorphic if 

there exists an isomorphism between them. This is 

written mathematically as (G, )  (H, ) (Jacobson, 

2009). 

Intuitively, group theorists view two isomorphic 

groups as follows: For every element g of a group G, 

there exists an element h of H such that h behaves in 

the same way as g (operates with other elements of 

the group in the same way as g). For instance, if g 

generates G, then h also generates H. This implies in 

particular that G and H are in bijective 

correspondence. Thus, the definition of an 

isomorphism is quite natural. 

An isomorphism of groups may equivalently be 

defined as an invertible morphism in the category of 

groups, where invertible here means has a two-sided 

inverse. Examples of isomorphism are as follows: 

The group of all real numbers with respect to 

addition, (, +) is isomorphic to the group of positive 

real numbers with respect to multiplication (
+
,×), 

the Klein four-group is isomorphic to the direct 

product of two copies of Z2 = Z/2Z and can therefore 

be written as Z2 × Z2, e.t.c. 

Few among the properties of isomorphism are: The 

Kernel of an isomorphism from (G, ∗) to (H, ), is 

always {eG} where eG is the identity of the group (G, 

∗); If (G, ∗) is isomorphic to (H, ), and if G is 

Abelian then so is H; If (G, ∗) is a group that is 

isomorphic to (H, ) with  as the isomorphism, and 

if x belongs to G and has order n, then so does (x) 

and if (G, ∗) is a locally finite group that is 

isomorphic to (H, ), then (H, ) is also locally finite. 

Cyclic Groups 

It is observed that all cyclic groups of a given order 

are isomorphic to (Zn, +n). Given a cyclic group G 

and n be the order of G, then G is the group generated 

by < x > = {e, x, x
2
, …, x

n-1
}. It is easy to see that G  

(Zn, +n). Now define a function 

:GZn by (x
n
) = n where Zn = {0, 1, 2, …, n-1}. 

Then clearly,  is bijective. Then 
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(x
m
  x

n
) = (x

m + n
) = m + n = (x

m
) +n (x

n
), which 

shows that G  (Zn, +n). 

 

From the definition, it follows that any isomorphism 

:GH will map the identity element of G to the 

identity element of H, i.e. (eG) = eH and inverses to 

inverses (x
-1

) = [(x)]
-1

 and more generally, nth 

powers to nth powers, (x
n
) = [(x)]

n
 for all x in G, 

where the inverse function -1
: HG is again an 

isomorphism. The relation "isomorphic" is an 

equivalence relation. If  is an isomorphism between 

two groups G and H, then everything that is true 

about G that is only related to the group structure can 

be translated via  into a true ditto statement about H, 

and vice versa (Rose, 2012). 

 

Automorphism 

An isomorphism from a group (G, ∗) to itself is 

called an automorphism of this group. Thus, it is a 

bijection :GG such that (x  y) = (x)  (y) for 

all x, yG. An automorphism always maps the 

identity to itself. The image under an automorphism 

of a conjugacy class is always a conjugacy class (the 

same or another). The image of an element has the 

same order as that element. The composition of two 

automorphism is again an automorphism, and with 

this operation the set of all automorphism of a group 

G, denoted by Aut(G), forms itself a group, the 

automorphism group of G. For all Abelian groups 

there is at least the automorphism that replaces the 

group elements by their inverses. However, in groups 

where all elements are equal to their inverse, this is 

the trivial automorphism; example is the Klein four-

group. For that group all permutations of the three 

non-identity elements are automorphism, so the 

automorphism group is isomorphic to S3 and D3. 

In Zp for a prime number p, one non-identity element 

can be replaced by any other, with corresponding 

changes in the other elements. The automorphism 

group is isomorphic to Zp−1. For example, for n = 7, 

multiplying all elements of Z7 by 3, modulo 7, is an 

automorphism of order 6 in the automorphism group, 

because 3
6
 ≡ 1 (modulo 7), while lower powers do 

not give 1. Thus this automorphism generates Z6. 

There is one more automorphism with this property: 

multiplying all elements of Z7 by 5, modulo 7. 

Therefore, these two correspond to the elements 1 

and 5 of Z6, in that order or conversely. The 

automorphism group of Z6 is isomorphic to Z2, 

because only each of the two elements 1 and 5 

generate Z6, so apart from the identity we can only 

interchange these (Rose, 2012). 

The automorphism group of Z2 × Z2 × Z2 = D2 × Z2 

has order 168, as can be found as follows. All 7 non-

identity elements play the same role, so we can 

choose which plays the role of (1,0,0). Any of the 

remaining 6 can be chosen to play the role of (0,1,0). 

This determines which corresponds to (1,1,0). For 

(0,0,1) we can choose from 4, which determines the 

rest. Thus we have 7 × 6 × 4 = 168 automorphism. 

They correspond to those of the Fano plane, of which 

the 7 points correspond to the 7 non-identity 

elements. The lines connecting three points 

correspond to the group operation: a, b, and c on one 

line means a + b = c, a + c = b, and b + c = a. For 

Abelian groups all automorphism except the trivial 

one are called outer automorphism. Non-Abelian 

groups have a non-trivial inner automorphism group, 

and possibly also outer automorphism. 

One can also apply the fundamental theorem to count 

(and sometimes determine) the automorphism of a 

given finite Abelian group G. To do this, one uses the 

fact that if G splits as a direct sum H ⊕ K of 

subgroups of coprime order, then Aut(H ⊕ K) ≅ 

Aut(H) ⊕ Aut(K). Given this, the fundamental 

theorem shows that to compute the automorphism 

group of G it suffices to compute the automorphism 

groups of the Sylow p-subgroups separately (that is, 

all direct sums of cyclic subgroups, each with order a 

power of p). Fix a prime p and suppose the exponents 

ei of the cyclic factors of the Sylow p-subgroup are 

arranged in increasing order as e1  e2  …  en for 

some integer n > 0. One needs to find the 

automorphism of Zpe1  Zpe2  …  Zpen. One 

special case is when n = 1, so that there is only one 

cyclic prime-power factor in the Sylow p-subgroup 

P. In this case the theory of automorphism of a finite 

cyclic group can be used. Another special case is 

when n is arbitrary but ei = 1 for 1 ≤ i ≤ n. Here, one 

is considering P to be of the form Zp  Zp  …  Zp 

(n-times), so elements of this subgroup can be viewed 

as comprising a vector space of dimension n over the 

finite field of p elements Fp. The automorphism of 
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this subgroup are therefore given by the invertible 

linear transformations, so Aut(P)  GL(n, Fp), where 

GL is the appropriate general linear group. This is 

easily shown to have order |Aut(P)| = (p
n
 – 1)…(p

n
 – 

p
n-1

) (Hillar, 2007). 

 

 

Cartesian product 

The Cartesian product of sets S1, S2, …, Sn is the set 

of all ordered n-tuples (x1, x2, …, xn), where xiSi 

(Lang, 2005). The Cartesian product is usually 

denoted by either 

nSSS  ...21  or by i

n

i

S
1

 . 

Now, let the binary operations on the groups G1, G2, 

…, Gn be multiplication. Regarding the Gi as sets, we 

can form the Cartesian product i

n

i

G
1

  of the groups 

G1, G2, …, Gn. It is also easy to make i

n

i

G
1

  into a 

group by means of a binary operation of 

multiplication by components. Consider the 

following theorems: 

Theorem 3.1: Let G1, G2, …, Gn be groups. For (x1, 

x2, …, xn) and (y1, y2, …, yn) in i

n

i

G
1

 , define (x1, x2, 

…, xn)(y1, y2, …, yn) = (x1 y1, x2 y2, …, xn yn). Then 

i

n

i

G
1

  is a group called the External Direct Product 

of the groups G1, G2, …, Gn under this binary 

operation (John, 1976). 

Proof: Now, since each Gi is a group for i = 1, 2, …, 

n and xi,yiGi for all i, then xiyiGi. Thus the 

definition of the binary operation on i

n

i

G
1

  given in 

the statement of the theorem is well defined, i.e. the 

binary operation is closed on i

n

i

G
1

 . 

The associativity law in i

n

i

G
1

  is thrown back onto 

the associativity law in each component as follows: 

(x1, x2, …, xn)[(y1, y2, …, yn)(z1, z2, …, zn)] = (x1, x2, 

…, xn)(y1z1, y2z2, …, ynzn) 

= (x1(y1z1), x2(y2z2), …, xn(ynzn)) 

= ((x1y1)z1, (x2y2)z2, …, (xnyn)zn) 

= ((x1y1), (x2y2), …, (xnyn))(z1, z2, …, zn) 

= [(x1, x2, …, xn)(y1, y2, …, yn)](z1, z2, …, zn). 

 

If ei is the identity element in Gi for all i, then clearly, 

with multiplication by components, (e1, e2, …, en) is 

the identity in i

n

i

G
1

 . The inverse of (x1, x2, …, xn) is 

),...,,( 11

2

1

1



nxxx , for 

(x1, x2, …, xn)  ),...,,( 11

2

1

1 nxxx

),...,,( 11

22

1

11



nn xxxxxx  = (e1, e2, …, en). Hence 

i

n

i

G
1

  is a group as required. 

We also note that if the group Gi has ri elements for i 

= 1, 2, …, n, then i

n

i

G
1

  has r1r2…rn elements, for in 

an n-tuple, there are r1 choices for the first 

component from G1, and for each of these there are r2 

choices for the next component from G2, e.t.c. 

Remark 3.2: We noticed that for the groups G1, G2, 

…, Gn with orders r1, r2, …, rn respectively, we have 

|G1  G2  …  Gn| = |G1| |G2| … |Gn| = r1r2…rn 

where the product G1  G2  …  Gn is a new group 

which may or may not be isomorphic to the group 

Gr1r2…rn. This will be our specific objective for this 

article. 

We shall now make a conjecture on the direct product 

of two finite cyclic groups of relatively prime orders. 

Consider the groups Z/pZ and Z/qZ. Let p and q be 

relatively prime positive integers. For any integer a, 

denote the residue class of a (mod p) by a , and the 

residue class of a (mod q) by a*. Obviously, a Zp 

and a*Zq. Consider the function :ZZpZq. 

Then  is a homomorphism for 

 babbaabababababa  *),(*),(*)*,()*)(,()(  



 

                                                                                                                          Samaila et al., ADSUJSR, 7(1):108-123, April, 2019 

113 
 

for all a,bZ. Again, Z/Ker   Im. Now aKer if 

and only if 0a  and a* = 0*, that is, if and only if 

p|a and q|a. Since p and q are relatively prime, the 

latter condition is equivalent to pq|a. Hence the 

kernel Ker = pqZ and Z/pqZ  Im, where the image 

Im is a subgroup of Z/pZ  Z/qZ. Finally, from 

pq = |Z/pqZ| = |Im|  |Z/pZ  Z/qZ| = |Z/pZ| |Z/qZ| = 

pq 

We conclude that |Im| = pq and hence, Im = Z/pZ 

 Z/qZ which shows that  is onto and Z/pqZ  Z/pZ 

 Z/qZ. 

Hence, we have: 

Theorem 3.3: The group Zm  Zn is isomorphic to 

Zmn if and only if (m, n) = 1 (John, 1976). 

Example 3.4: Consider the group [-1, +1]  Q
+
 

where Q
+
 is the set of all positive rational numbers. 

The elements of the group [-1, +1]  Q
+
 is the set of 

all ordered pairs (x, q) such that x[-1, +1] and 

qQ
+
. Define a mapping Q\{0}  [-1, +1]  Q

+
 by 

(q) = (sgn q, |q|) where sgn|q| = 1. Then  is a 

homomorphism for 

 (q1q2) = (sgnq1q2, |q1q2|) = (sgnq1sgnq2, 

|q1||q2|) = (sgnq1,|q2|)(sgnq2, |q2|) = (q1)(q2) 

for all q1, q2Q\{0}. The kernel of  is 

Ker  = {qQ\{0} : q = (1, 1)} = {qQ\{0} : sgn q 

= 1, |q| = 1} 

= {q  Q\{0} : q > 0, |q| = 1}  =  {1}, 

that is,  is one-to-one. But any (x, q)  [-1, +1]  

Q
+
 is the image of x|q|  Q\{0}, i.e.  is an onto 

homomorphism and hence,  is an isomorphism so 

that Q\{0}  [-1, +1]  Q
+
. 

The theorem 2 above can be extended to a product of 

more than two groups by induction argument. It is 

also true that two groups are isomorphic if and only if 

they have the same order. 

Lemma 3.5: Let G1, G2, …, Gn, H1, H2, …, Hn be 

groups and assume that 

G1  H1, G2  H2, …, Gn  Hn, then G1  G2  …  

Gn  H1  H2  …  Hn (Lang, 2002). 

Proof (Review): Let i:GiHi be an isomorphism 

for i = 1, 2, …, n. Then the mapping 

:G1G2…Gn  H1H2…Hn where (g1, g2, 

…, gn) = (g11, g22, …, gnn) 

Is a homomorphism since 

 

 ),...,,()),...,,)(,...,,(( 22112121 nnnn gggggggggggg 
 

   
))(,...,)(,)(( 222111 nnn gggggg  

 

   
),...,,( 22221111 nnnn gggggg  

 

   
),...,,)(,...,,( 22112211 nnnn gggggg  

 

   
 ),...,,(),...,,( 2121 nn gggggg 

 

for all nnn GGGgggggg  ...),...,,(),,...,,( 212121 . Also since 

 
)}1,...,1,1(),...,,(:...),...,,{( 22112121  nnnn gggGGGgggKer 

 

   
}1,...,1,1:...),...,,{( 22112121  nnnn gggGGGggg 

 

   
}1,...,1,1:...),...,,{( 212121  nnn gggGGGggg

 

   
1)}1,...,1,1{( 

,  is one-to-one. 

 

Again,  is onto, for given (h1, h2, …, hn)  H1  H2 

 …  Hn we always have gi  Gi with gii = hi. 

Hence, (h1, h2, …, hn) is the image of (g1, g2, …, gn) 

 G1  G2  …  Gn under . Thus,  is an 

isomorphism and 
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 G1  G2  …  Gn  H1  H2  …  Hn 

as required. 

The next theorem is telling us that given two groups 

H and K such that |H| = p and |K| = q where p and q 

are prime numbers with p < q and q  1 (mod p). 

Then the group formed by the product of H and K, 

given by G = H  K of order pq is cyclic. 

Theorem 3.6: Let p and q be prime numbers, where 

p < q and q  1 (mod p). Then any group of order pq 

is cyclic (Robinson, 1996). 

Morphisms between Representations 

Given two representations ρ: G → GL(n, C) and τ: G 

→ GL(m, C), a morphism between ρ and τ is a linear 

map T : C
n
 → C

m
 so that for all g in G we have the 

following commuting relation: T ° ρ(g) = τ(g) ° T. 

According to Schur’s lemma, a non-zero morphism 

between two irreducible complex representations is 

invertible, and moreover, is given in matrix form as a 

scalar multiple of the identity matrix. This result 

holds as the complex numbers are algebraically 

closed. 

Again, since a representation ρ defines an action on a 

vector space C
n
, it may turn out that C

n
 has an 

invariant subspace V ⊂ C
n
. The action of G is given 

by complex matrices and this in turn defines a new 

representation σ : G → GL(V). We call σ a sub-

representation of ρ. A representation without sub-

representations is called irreducible. 

To construct new representations from old, there are 

number of ways in which one can combine 

representations to obtain new ones. Each of these 

methods involves the application of a construction 

from linear algebra to representation theory. 

 

Given two representations ρ1, ρ2 we may construct 

their direct sum ρ1 ⊕ ρ2 by (ρ1 ⊕ ρ2) (g)(v, w) = 

(ρ1(g)v, ρ2(g)w); 

The tensor representation of ρ1, ρ2 is defined by (ρ1  

ρ2) (v  w) = ρ1(v)  ρ2(w); 

Let ρ : G → GL(n,C) be a representation. Then ρ 

induces a representation ρ
*
 on the dual vector space 

Hom(C
n
, C); Let  : C

n
 → C be a linear functional. 

The representation ρ
*
 is then defined by the rule 

ρ
*
(g)() =  ρ(g)

−1
. The representation ρ

*
 is called 

either the dual representation or the contra-gradient 

representation of ρ. Furthermore, if a representation ρ 

has a sub-representation σ then the quotient of the 

representing vector spaces for ρ and σ has a well 

defined action of G on it. We call the resulting 

representation the quotient representation of ρ by σ. 

We shall now see how to apply Schur’s lemma 

between morphisms of representations. 

Lemma 4.1 (Schur’s lemma): If  : A  B → C is a 

morphism of representations, then the corresponding 

linear transformation obtained by dualizing B is: ′ : 

A → C  B
*
 which is also a morphism of 

representations. Similarly, if  : A → B  C is a 

morphism of representations, dualizing it will give 

another morphism of representations ′ : A  C
*
 → B 

(La, 2000). 

If ρ is an n-dimensional irreducible representation of 

G with the underlying vector space V, then we can 

define a G×G morphism of representations, for all g 

in G and x in V as 

 : C[G]  (1G  V) → (V  1G) by  : (g  x) = 

ρ(g)[x] 

where 1G is the trivial representation of G. This 

defines a G×G morphism of representations. 

Results 

Construction by Product 

We start this section by constructing groups in favor 

of theorem 3.3, using positive integers m and n such 

that (m, n) = 1 (Samaila, 2016). 

Let U(n) be the set of all positive integers less than n 

and relatively prime to n. Then U(n) is a group under 

multiplication modulo n. Now, we shall begin with 

the help of GAP, by making a conjecture about the 

size of the group U(pq) in terms of the groups U(p) 

and U(q) where p and q are relatively prime numbers 

greater than 2. 

Let p = 11 and q = 13, then we obtained U(11), U(13) and U(143) using GAP as follows: 

gap> ulist(11); 
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[ Z(11)^0, Z(11), Z(11)^8, Z(11)^2, Z(11)^4, Z(11)^9, Z(11)^7, Z(11)^3, 
Z(11)^6, Z(11)^5 ] 
gap> Size(ulist(11));10 
gap> ulist(13); 
[ Z(13)^0, Z(13), Z(13)^4, Z(13)^2, Z(13)^9, Z(13)^5, Z(13)^11, 
Z(13)^3, Z(13)^8, Z(13)^10, Z(13)^7, Z(13)^6 ] 
gap> Size(ulist(13));12 
gap> Size(ulist(11))*Size(ulist(13));120 
gap> ulist(143); 
[ ZmodnZObj( 1, 143 ), ZmodnZObj( 2, 143 ), ZmodnZObj( 3, 143 ),  
ZmodnZObj( 4, 143 ), ZmodnZObj( 5, 143 ), 
ZmodnZObj( 6, 143 ), ZmodnZObj( 7, 143 ), ZmodnZObj( 8, 143 ), 
ZmodnZObj( 9, 143 ), ZmodnZObj( 10, 143 ), 
ZmodnZObj( 12, 143 ), ZmodnZObj( 14, 143 ), ZmodnZObj( 15, 143 ),  
ZmodnZObj( 16, 143 ), ZmodnZObj( 17, 143 ), 
ZmodnZObj( 18, 143 ), ZmodnZObj( 19, 143 ), ZmodnZObj( 20, 143 ),  
ZmodnZObj( 21, 143 ), ZmodnZObj( 23, 143 ), 
ZmodnZObj( 24, 143 ), ZmodnZObj( 25, 143 ), ZmodnZObj( 27, 143 ), 
ZmodnZObj( 28, 143 ), ZmodnZObj( 29, 143 ), 
ZmodnZObj( 30, 143 ), ZmodnZObj( 31, 143 ), ZmodnZObj( 32, 143 ),  
ZmodnZObj( 34, 143 ), ZmodnZObj( 35, 143 ), 
ZmodnZObj( 36, 143 ), ZmodnZObj( 37, 143 ), ZmodnZObj( 38, 143 ),  
ZmodnZObj( 40, 143 ), ZmodnZObj( 41, 143 ), 
ZmodnZObj( 42, 143 ), ZmodnZObj( 43, 143 ), ZmodnZObj( 45, 143 ),  
ZmodnZObj( 46, 143 ), ZmodnZObj( 47, 143 ), 
ZmodnZObj( 48, 143 ), ZmodnZObj( 49, 143 ), ZmodnZObj( 50, 143 ),  
ZmodnZObj( 51, 143 ), ZmodnZObj( 53, 143 ), 
ZmodnZObj( 54, 143 ), ZmodnZObj( 56, 143 ), ZmodnZObj( 57, 143 ),  
ZmodnZObj( 58, 143 ), ZmodnZObj( 59, 143 ), 
ZmodnZObj( 60, 143 ), ZmodnZObj( 61, 143 ), ZmodnZObj( 62, 143 ),  
ZmodnZObj( 63, 143 ), ZmodnZObj( 64, 143 ), 
ZmodnZObj( 67, 143 ), ZmodnZObj( 68, 143 ), ZmodnZObj( 69, 143 ), 
ZmodnZObj( 70, 143 ), ZmodnZObj( 71, 143 ), 
ZmodnZObj( 72, 143 ), ZmodnZObj( 73, 143 ), ZmodnZObj( 74, 143 ),  
ZmodnZObj( 75, 143 ), ZmodnZObj( 76, 143 ), 
ZmodnZObj( 79, 143 ), ZmodnZObj( 80, 143 ), ZmodnZObj( 81, 143 ),  
ZmodnZObj( 82, 143 ), ZmodnZObj( 83, 143 ), 
ZmodnZObj( 84, 143 ), ZmodnZObj( 85, 143 ), ZmodnZObj( 86, 143 ),  
ZmodnZObj( 87, 143 ), ZmodnZObj( 89, 143 ), 
ZmodnZObj( 90, 143 ), ZmodnZObj( 92, 143 ), ZmodnZObj( 93, 143 ),  
ZmodnZObj( 94, 143 ), ZmodnZObj( 95, 143 ), 
ZmodnZObj( 96, 143 ), ZmodnZObj( 97, 143 ), ZmodnZObj( 98, 143 ),  
ZmodnZObj( 100, 143 ), ZmodnZObj( 101, 143 ), 
ZmodnZObj( 102, 143 ), ZmodnZObj( 103, 143 ), ZmodnZObj( 105, 143 ), 
ZmodnZObj( 106, 143 ), ZmodnZObj( 107, 143 ), 
ZmodnZObj( 108, 143 ), ZmodnZObj( 109, 143 ), ZmodnZObj( 111, 143 ), 
ZmodnZObj( 112, 143 ), ZmodnZObj( 113, 143 ), 
ZmodnZObj( 114, 143 ), ZmodnZObj( 115, 143 ), ZmodnZObj( 116, 143 ), 
ZmodnZObj( 118, 143 ), ZmodnZObj( 119, 143 ), 
ZmodnZObj( 120, 143 ), ZmodnZObj( 122, 143 ), ZmodnZObj( 123, 143 ), 
ZmodnZObj( 124, 143 ), ZmodnZObj( 125, 143 ), 
ZmodnZObj( 126, 143 ), ZmodnZObj( 127, 143 ), ZmodnZObj( 128, 143 ), 
ZmodnZObj( 129, 143 ), ZmodnZObj( 131, 143 ), 
ZmodnZObj( 133, 143 ), ZmodnZObj( 134, 143 ), ZmodnZObj( 135, 143 ), 
ZmodnZObj( 136, 143 ), ZmodnZObj( 137, 143 ), 
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ZmodnZObj( 138, 143 ), ZmodnZObj( 139, 143 ), ZmodnZObj( 140, 143 ), 
ZmodnZObj( 141, 143 ), ZmodnZObj( 142, 143 ) ] 
gap> Size(ulist(143));120 
gap> (Size(ulist(143)))=(Size(ulist(11))*Size(ulist(13))); 
true 

From the above conjecture, we have seen that the 

order |U(11)||U(13)| = |U(143)| = 120. Hence, 

)143()13()11( UUU  , where U(143) is the 

new group obtained from the product of U(11) and 

U(13). The output ZmodnZObj( 5, 143 ) for example, 

means the element 5 mod 143. 

We can also generates different subgroups for each 

group, for example in U(143), the cyclic subgroup 

generated by ZmodnZObj( 5, 143 ) is 

gap> cyclic(143, 5); 
[ZmodnZObj( 5, 143 ), ZmodnZObj( 25, 143 ), ZmodnZObj( 125, 143 ),  
ZmodnZObj( 53, 143 ), ZmodnZObj( 122, 143 ),ZmodnZObj( 38, 143 ),  
ZmodnZObj( 47, 143 ), ZmodnZObj( 92, 143 ), ZmodnZObj( 31, 143 ),  
ZmodnZObj( 12, 143 ),ZmodnZObj( 60, 143 ), ZmodnZObj( 14, 143 ),  
ZmodnZObj( 70, 143 ), ZmodnZObj( 64, 143 ), ZmodnZObj( 34, 143 ), 
ZmodnZObj( 27, 143 ), ZmodnZObj( 135, 143 ), ZmodnZObj( 103, 143 ), 
ZmodnZObj( 86, 143 ), ZmodnZObj( 1, 143 ) ] 
gap> Size(cyclic(143, 5)); 
20 

Taking different values for n, p and q as defined above, gives more group structures and their respective subgroups. 

The next conjecture is about the relationship between the size of the groups U(p
k
) and U(2p

k
) where p is a prime 

number greater than 2, and k is any positive integer. Now let p = 3 and k = 2. 

gap> ulist(9); 
[ ZmodnZObj( 1, 9 ), ZmodnZObj( 2, 9 ), ZmodnZObj(4,9), ZmodnZObj(5,9), 
ZmodnZObj( 7, 9 ), ZmodnZObj( 8, 9 ) ] 
gap> Size(ulist(9)); 
6 
gap> ulist(18); 
[ ZmodnZObj( 1, 18 ), ZmodnZObj( 5, 18 ), ZmodnZObj(7,18), 
ZmodnZObj(11,18 ), ZmodnZObj( 13, 18 ),ZmodnZObj( 17, 18 ) ] 
gap> Size(ulist(18)); 
6 
gap> Size(ulist(9))=Size(ulist(18)); 
true 

The above result shows that the order |U(p
k
)| = |U(2p

k
)|. We therefore conclude that the two groups are 

isomorphic to each order. This is true for all prime numbers p>2. For p = 2, |U(2p
k
)| = 2|U(p

k
)|. 

Again, consider the direct product of the cyclic subgroup C8 of S8 with the Symmetric group S4. If we 

denote the direct product by D, then D = C8  S4 as presented below. 

gap> C8:= CyclicGroup(IsPermGroup, 8); 
Group([ (1,2,3,4,5,6,7,8) ]) 
gap> Size(C8); 
8 
gap> S4:= SymmetricGroup(4); 
Sym( [ 1 .. 4 ] ) 
gap> Size(S4); 
24 
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gap> D:= DirectProduct(C8, S4); 
Group([ (1,2,3,4,5,6,7,8), (9,10,11,12), (9,10) ]) 
gap> orderFrequency(D); 
[ [ 1, 1 ], [ 2, 19 ], [ 3, 8 ], [ 4, 44 ], [ 6, 8 ], [ 8, 64 ], [ 12, 
16 ], [ 24, 32 ] ] 
gap> Size(D); 
192 
gap> (Size(C8)*Size(S4))=Size(D);true 
gap> IsNormal(D, C8); 
true 
gap> IsNormal(D, S4); 
false 

From the above result, the constructed group D is 

isomorphic to the direct product C8  S4 of the 

groups C8 and S4. The subgroup C8 of D is normal in 

D while the subgroup S4 is not normal in D. The 

output orderFrequency(D) means the group D has 

one element of order 1, nineteen elements of order 2, 

eight elements of order 3, fourty four elements of 

order 4, eight elements of order 6, sixty four elements 

of order 8, sixteen elements of order 12 and thirty 

two elements of order 24. 

Construction by Symmetries 

In this section, we formulate some groups based on 

the movements of the edges of a cube, take Rubik’s 

cube as an example and label the eight vertices with 

numbers 1 to 8. We shall use G* to denote the group 

of the rotational symmetries of the cube (of order 8) 

which is a subgroup of the symmetric group S8. Note 

that each rotation is 90
0
, (e.g. r = (1, 2, 3, 4)(5, 6, 7, 

8) is a rotation through 90
0
) (Samaila, 2013). 

gap> S:= SymmetricGroup(8); 
Sym( [ 1 .. 8 ] ) 
gap> r:= (1, 2, 3, 4)(5, 6, 7, 8);; 
gap> H:= Subgroup(S, [r]); 
Group([ (1,2,3,4)(5,6,7,8) ]) 
gap> Elements(H); 
[ (), (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8), (1,4,3,2)(5,8,7,6) ] 
gap> s:= (1, 5, 8, 4)(2, 6, 7, 3);; 
gap> R:= Subgroup(S, [s]); 
Group([ (1,5,8,4)(2,6,7,3) ]) 
gap> Elements(R); 
[ (), (1,4,8,5)(2,3,7,6), (1,5,8,4)(2,6,7,3), (1,8)(2,7)(3,6)(4,5) ] 
gap> t:= (1, 2, 6, 5)(3, 7, 8, 4);; 
gap> K:= Subgroup(S, [t]); 
Group([ (1,2,6,5)(3,7,8,4) ]) 
gap> Elements(K); 
[ (), (1,2,6,5)(3,7,8,4), (1,5,6,2)(3,4,8,7), (1,6)(2,5)(3,8)(4,7) ] 
gap> Size(H); Size(R); Size(K); 
4 
4 
4 
gap> H = R; H = K; R = K; 
false 
false 
false 
gap> L:= Subgroup(S, [r, t]); 
Group([ (1,2,3,4)(5,6,7,8), (1,2,6,5)(3,7,8,4) ]) 
gap> Elements(L); 
[ (), (2,4,5)(3,8,6), (2,5,4)(3,6,8), (1,2)(3,5)(4,6)(7,8), 
(1,2,3,4)(5,6,7,8), (1,2,6,5)(3,7,8,4), (1,3,6)(4,7,5), 
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  (1,3)(2,4)(5,7)(6,8), (1,3,8)(2,7,5), (1,4,3,2)(5,8,7,6), 
(1,4,8,5)(2,3,7,6), (1,4)(2,8)(3,5)(6,7), 
  (1,5,6,2)(3,4,8,7), (1,5,8,4)(2,6,7,3), (1,5)(2,8)(3,7)(4,6), 
(1,6,3)(4,5,7), (1,6)(2,5)(3,8)(4,7), (1,6,8)(2,7,4), 
  (1,7)(2,3)(4,6)(5,8), (1,7)(2,6)(3,5)(4,8), (1,7)(2,8)(3,4)(5,6), 
(1,8,6)(2,4,7), (1,8,3)(2,5,7), 
  (1,8)(2,7)(3,6)(4,5) ] 
gap> Size(L); 
24 
gap> IsCyclic(L); 
false 
gap> u:= (1,2,4,5,8,6,7,3);; 
gap> v:= (2,4,6,8);; 
gap> M:= Subgroup(S, [u, v]); 
Group([ (1,2,4,5,8,6,7,3), (2,4,6,8) ]) 
gap> Size(M); 
40320 
gap> IsCyclic(M); 
false 
gap> IsNormal(S, M); 
true 
gap> S = M; 
true 
gap> Factorization(M, (1,8,3,6,4,5,2,7)); 
x2^-1*x1^2*x2^2 
gap> Factorization(M, (1,6,4,5,3,2,7,8)); 
x2^2*x1^-1*x2^2*x1^2*x2^-1*x1 
gap> Factorization(M, ((1,3,5,7)(2,4,6,8))); 
x2^2*x1^-1*(x2^-1*x1^2)^2*x1 
gap> Factorization(M, ((1,8)(2,7,4)(3,6,5))); 
x1*x2^-1*x1^-2*x2*x1*x2*x1^-2 
gap> Factorization(M, ((1,4,2)(3,5,6,8,7))); 
x1^-1*x2^-1*(x1^2*x2)^2*x1^-1*x2*x1^2 
gap> Factorization(M, (3,8)); 
x2*x1^-1*(x2*x1)^2*x2^-1*x1^4 
gap> quit; 

 

It is clear that every rotation of the cube is in the 

subgroup L. Thus G* = L and hence, G*  L. Also 

from the output, the subgroups H, R and K of G* are 

distinct proper subgroups of G*. Again, the output 
Factorization(M, (1,8,3,6,4,5,2,7)) 

= x2^-1*x1^2*x2^2 tells us that 
(1,8,3,6,4,5,2,7) = (2,4,6,8)-1 * 

(1,2,4,5,8,6,7,3)2 * (2,4,6,8)2 where 

x1 and x2 are the first and the second generators of 

the group M respectively, where M = S. 

Next, we define a function f from a group G to itself, where G is a cyclic subgroup of the permutation group S8 as 

follows: 

gap> G:= CyclicGroup(IsPermGroup, 8); 
Group([ (1,2,3,4,5,6,7,8) ]) 
gap> Elements(G); 
[ (), (1,2,3,4,5,6,7,8), (1,3,5,7)(2,4,6,8), (1,4,7,2,5,8,3,6), 
(1,5)(2,6)(3,7)(4,8), (1,6,3,8,5,2,7,4), (1,7,5,3)(2,8,6,4), 
(1,8,7,6,5,4,3,2) ] 
gap> r:= G.1; 
(1,2,3,4,5,6,7,8) 
gap> f:= x -> x^5; 
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function( x ) ... end 
gap> N:= Subgroup(G, [f(r)]); 
Group([ (1,6,3,8,5,2,7,4) ]) 
gap> Elements(N); 
[ (), (1,2,3,4,5,6,7,8), (1,3,5,7)(2,4,6,8), (1,4,7,2,5,8,3,6), 
(1,5)(2,6)(3,7)(4,8), (1,6,3,8,5,2,7,4), (1,7,5,3)(2,8,6,4), 
(1,8,7,6,5,4,3,2) ] 
gap> Size(N); 
8 
gap> Size(G) = Size(N); 
true 
gap> N = G; 
true 
gap> f:= x -> x^4; 
function( x ) ... end 
gap> M:= Subgroup(G, [f(r)]); 
Group(()) 
gap> Elements(M); 
[ () ] 
gap> Size(M); 
1 
gap> f:= x -> x^6; 
function( x ) ... end 
gap> K:= Subgroup(G, [f(r)]); 
Group([ (1,7,5,3)(2,8,6,4) ]) 
gap> Elements(K); 
[ (), (1,3,5,7)(2,4,6,8), (1,5)(2,6)(3,7)(4,8), (1,7,5,3)(2,8,6,4) ] 
gap> Size(K); 
4 
gap> Size(G)/Size(K); 
2 

The subgroup N of G is the image of G under the 

function f(x) = x
5
. The order of the subgroup N is 8, 

equal to the order of G and the output shows that N = 

G. Hence the function f is an automorphism. But the 

images M and K of G under the functions f(x) = x
4
 

and f(x) = x
6
 respectively, are proper subgroups of G, 

where M is the trivial subgroup of G whose only 

element is the identity element e, of G. The pre-

image of M under the function f(x) = x
4
 gives the 

kernel of the function. Also, the index [G : K] of the 

subgroup K in G is 2. Hence, the subgroup N is 

normal in G, i.e. GN  . 

Fundamental Theorem of Finite Abelian Group 

By the fundamental theorem of finitely generated 

Abelian groups, every finite Abelian group is 

isomorphic to the direct product of cyclic groups of 

prime power order. Knowing that a factor group G/H 

with G finite and Abelian, is also a finite Abelian 

group (Samaila, 2016), suppose G = Z4  Z7  Z6, 

and that H and M are subgroups of G generated by (2, 

1, 2) and (3, 1, 2) respectively, (where 1, 2 and 3 are 

the powers of the generators), then we generate the 

factor groups G/H and G/M as follows; 

gap> Z4:= CyclicGroup(IsPermGroup, 4); 
Group([ (1,2,3,4) ]) 
gap> Z7:= CyclicGroup(IsPermGroup, 7); 
Group([ (1,2,3,4,5,6,7) ]) 
gap> Z6:= CyclicGroup(IsPermGroup, 6); 
Group([ (1,2,3,4,5,6) ]) 
gap> G:= DirectProduct(Z4, Z7, Z6); 
Group([ (1,2,3,4), (5,6,7,8,9,10,11), (12,13,14,15,16,17) ]) 
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gap> H:= Subgroup(G, [(1,2,3,4)^2, (5,6,7,8,9,10,11), 
(12,13,14,15,16,17)^2]); 
Group([ (1,3)(2,4), (5,6,7,8,9,10,11), (12,14,16)(13,15,17) ]) 
gap> F:= FactorGroup(G, H); 
Group([ f1, f2 ]) 
gap> Size(F); 
4 
gap> Size(H); 
42 
gap> Size(G); 
168 
gap> M:= Subgroup(G, [(1,2,3,4)^3, (5,6,7,8,9,10,11), 
(12,13,14,15,16,17)^2]); 
Group([ (1,4,3,2), (5,6,7,8,9,10,11), (12,14,16)(13,15,17) ]) 
gap> N:= FactorGroup(G, M); 
Group([ f1 ]) 
gap> Size(N); 
2 
gap> Size(M); 
84 
gap> Elements(F); 
[ <identity> of ..., f1, f2, f1*f2 ] 
gap> Elements(N); 
[ <identity> of ..., f1 ] 

The group Z4 is isomorphic to Z4, Z7 is isomorphic to 

Z7 and Z6 is isomorphic to Z6. Thus from the output, 

G is isomorphic to  Z4  Z7  Z6. Also, in the output 

as direct product, the elements of Z7 are written as 

powers of the permutation (5,6,7,8,9,10,11) and that 

of Z6 are written as powers of the permutation 

(12,13,14,15,16,17). The element (1,2,3,4)
2
 generates 

a subgroup of order 2 of Z4. Similarly, the element 

(12,13,14,15,16,17)
2
 generates a subgroup of Z6 of 

order 3. Thus H is isomorphic to the subgroup of G 

generated by (2, 1, 2). Similarly, M is isomorphic to 

the subgroup of G generated by (3, 1, 2). The factor 

groups G/H and G/M are finite Abelian groups of 

order 4 and 2 respectively, so G/H is isomorphic to 

either Z4 or Z2  Z2 while G/M is isomorphic to Z2. 

Now, we have; 

gap> Read("orderFrequency"); 
gap> orderFrequency(F); 
 
[ [ 1, 1 ], [ 2, 3 ] ] 

Hence, since the factor group G/H has three elements of order 2 followed by the identity, it must be isomorphic to Z2 

 Z2. 

Group Homomorphism by Image 

If we specify any homomorphism, the command 

“GroupHomomorphismByImages” in GAP will 

create the specified homomorphism. Now, consider 

the symmetric group S4. Then from GAP, we have 

the following results. 

gap> S4:= SymmetricGroup(4); 
Sym( [ 1 .. 4 ] ) 
gap> f1:= GroupHomomorphismByImages(S4, S4, [(1,2,3,4), (2,4)], 
[(1,4,3,2), (1,3)]); 
fail 
gap> f2:= GroupHomomorphismByImages(S4, S4, [(1,2,3,4), (1,3,2,4)], 
[(1,4,3,2), (1,4,2,3)]); 
[ (1,2,3,4), (1,3,2,4) ] -> [ (1,4,3,2), (1,4,2,3) ] 
gap> Image(f2, (1,2,4,3)); 
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(1,2,4,3) 
gap> Image(f2, (2,4)); 
(1,3) 
gap> Image(f2, (1,2,4)); 
(1,4,3) 
gap> Size(Image(f2)); 
24 
gap> Kernel(f2); 
Group(()) 
gap> Size(S4) = Size(Image(f2)); 
true 

The first output (f1) of the group homomorphism by 

images is “fail”. This is because the defined map is 

not a homomorphism. From the second output f2, the 

kernel of f2 is the identity element of S4 and the size 

of the image of f2 is the whole of S4. Hence, f2 is not 

only a homomorphism, but an automorphism. 

Another way to identify if a homomorphism from a 

finite group G to itself is an automorphism is to 

determine if it is onto. In this case, we will need the 

file “GroupHomomorphismByImages” command in 

GAP to generate homomorphism from Dn to Dn. 

Then check if they are automorphism by checking to 

see if the kernel contains only the identity or the 

image is whole of Dn. Since a homomorphism is 

completely determined by the image of the generators 

of a group, we only need to specify where we want to 

map the two generators of Dn. Then we have the 

following results: 

 
 gap> Read("autoDn"); 
gap> Read("homoDn"); 
gap> d5:= DihedralGroup(IsPermGroup, 10); 
Group([ (1,2,3,4,5), (2,5)(3,4) ]) 
gap> autoDn(d5); 
[ [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,2,3,4,5), (2,5)(3,4) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,2,3,4,5), (1,2)(3,5) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,2,3,4,5), (1,3)(4,5) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,2,3,4,5), (1,4)(2,3) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,2,3,4,5), (1,5)(2,4) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,3,5,2,4), (2,5)(3,4) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,3,5,2,4), (1,2)(3,5) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,3,5,2,4), (1,3)(4,5) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,3,5,2,4), (1,4)(2,3) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,3,5,2,4), (1,5)(2,4) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,4,2,5,3), (2,5)(3,4) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,4,2,5,3), (1,2)(3,5) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,4,2,5,3), (1,3)(4,5) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,4,2,5,3), (1,4)(2,3) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,4,2,5,3), (1,5)(2,4) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,5,4,3,2), (2,5)(3,4) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,5,4,3,2), (1,2)(3,5) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,5,4,3,2), (1,3)(4,5) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,5,4,3,2), (1,4)(2,3) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,5,4,3,2), (1,5)(2,4) ] ] 
gap> homoDn(d5); 
[ [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (), () ], [ (1,2,3,4,5), (2,5)(3,4) 
] -> [ (), (2,5)(3,4) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (), (1,2)(3,5) ], [ (1,2,3,4,5), 
(2,5)(3,4) ] -> [ (), (1,3)(4,5) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (), (1,4)(2,3) ], [ (1,2,3,4,5), 
(2,5)(3,4) ] -> [ (), (1,5)(2,4) ], 
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  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,2,3,4,5), (2,5)(3,4) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,2,3,4,5), (1,2)(3,5) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,2,3,4,5), (1,3)(4,5) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,2,3,4,5), (1,4)(2,3) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,2,3,4,5), (1,5)(2,4) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,3,5,2,4), (2,5)(3,4) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,3,5,2,4), (1,2)(3,5) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,3,5,2,4), (1,3)(4,5) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,3,5,2,4), (1,4)(2,3) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,3,5,2,4), (1,5)(2,4) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,4,2,5,3), (2,5)(3,4) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,4,2,5,3), (1,2)(3,5) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,4,2,5,3), (1,3)(4,5) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,4,2,5,3), (1,4)(2,3) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,4,2,5,3), (1,5)(2,4) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,5,4,3,2), (2,5)(3,4) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,5,4,3,2), (1,2)(3,5) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,5,4,3,2), (1,3)(4,5) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,5,4,3,2), (1,4)(2,3) ], 
  [ (1,2,3,4,5), (2,5)(3,4) ] -> [ (1,5,4,3,2), (1,5)(2,4) ] ] 
gap> Size(autoDn(d5)); 
20 
gap> Size(homoDn(d5)); 
26 

The above output from GAP gives all the 

automorphism and all the homomorphism of the 

group D5 to itself. Since a homomorphism is 

completely determined by its image on a set of 

generators of the given group, GAP only specifies the 

image of the sets of the generators. 

Conclusion 

The Cartesian product of groups play a major role in 

the construction of new groups. It is seen that for any 

finite groups G1 and G2, the order |G1||G2|=|G1G2| 

and for all i = 1, 2, …, n, 





n

i

in GGGG
1

21 ||...|||| .  

Also, the fundamental theorem of finite Abelian 

group is used for generating and classification of 

morphisms and then determined the automorphism of 

a given finite Abelian group. This is achieved from 

the fact that if the group G is decomposed as a direct 

sum H ⊕ K of subgroups of coprime order, then 

Aut(H ⊕ K) ≅ Aut(H) ⊕ Aut(K). The result can 

therefore be generalized as follows: If the group G is 

decomposed as direct sum G1  G2  …  Gn of 

subgroups of coprime order, then Aut(G1  G2  … 

 Gn)  Auto(G1)  Auto(G2)  …  Auto(Gn). We 

also used the second part of the theorem which states 

that every finite Abelian group is isomorphic to the 

direct product of cyclic groups of prime power order 

to generate a factor group G/K with G finite and 

Abelian, K a subgroup of G. Finally, we identify 

some homomorphism and automorphism from a 

finite group G to itself. 
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