
Gideon Bibu and Julian Padget ADSUJSR 04(1): April, 2016

138

Security Policy Verification for Internal Information Security Threats using

Answer Set Programming

Gideon Bibu*1 and Julian Padget2
1Department of Computer Science University of Jos, Nigeria

2Department of Computer Science University of Bath, UK

Contact: dadikg@unijos.edu.ng

ABSTRACT

The adoption of technologies that allow for electronic processes and storage of

information has also resulted in the growing concern for the security of the

information system. The security challenges come in different ways including

technologies, processes, and humans through their interactions with one another.

While technical solutions abound for technology-related security problems, the

security challenges that arise from processes and humans interactions are usually

addressed by the application of appropriate organisational security policies. Hence

the design and specification of such policies is crucial to the achievement of the

desired security level in the organisation. Therefore, it is very crucial to verify the

policies against the system actors’ interactions when designing them. In this paper,

we present a computational reasoning mechanism that helps with the design-time

static verification of security policies. Using a simple example that allows us to

illustrate the principles of the approach, we show how processes and interactions are

represented in Inst , an action language based on answer set programming. The

reasoning mechanism of Inst is based on an institutional (normative) framework

in which actions lead to changes in state over a sequence of time instances resulting

in a collection of event traces. We demonstrate how the traces can then be used to

verify desired properties through examples.

KEYWORDS: Information security, Policy, ASP, Institution, verification

Introduction

The security of information and systems is a matter of major concern to most

organisations. This is as a result of the adoption of technologies that allow for

electronic processes and storage of information. As more and more highly sensitive

content is processed and managed electronically, the need for more secure systems

and efficient and compliant processes becomes increasingly critical. Security threats

to information and systems are generally categorised into external and internal

threats, underlining the fact that attacks could be launched from both inside and

outside the organisation. External threats are usually addressed by creating a

“perimeter” around the organisations’ assets which provide defences against the

perceived external attacks. This does not address the insider threat problem which is

more subtle than the external threat problem. The internal threat manifests itself

through many ways, including users’ behaviours that violate security policies.

These behaviours could either be malicious or non-malicious, however, whatever

the intention, these behaviours always have negative impact on the organisation. A

malicious insider is potentially more dangerous than an outside attacker. This is

mailto:dadikg@unijos.edu.ng

©Adamawa State University Journal of Scientific Research 04(1): April, 2016

 ISSN: 2251-0702

139

because an insider has legitimate and privileged access to information resources,

practical knowledge of the organisation and its processes, and knowledge of the

location of valuable and critical assets. An important step in mitigating the risks

posed by insider attacks is to carefully construct an enterprise wide security policy

that addresses usage and security issues (Mike and Kemp, 2005) in addition to the

implementation of necessary security threat mitigation mechanisms.

In this paper, we use the term Policy to refer to security policy. Policy has

been used in many ways to address security issues consisting of confidentiality,

integrity, and availability. Policies can be sets of rules that define choices in

behaviour of actors in terms of the conditions under which predefined operations or

actions can be invoked. Security policies provide the first step in preventing insider

abuse in organisations where expected security behaviours are usually presented in

the form of some high level security policies. However, the problem with policies is

that compliance cannot be guaranteed and hence the likelihood for the security

threats to persist, despite the existence of policies that should have ensured proper

behaviour by users. With this in mind, it is important that security policy designers

are able to verify that the policy is consistent with the operations of the organisation

so that everyday organizational processes do not stand in the way of compliance.

The process of verification would help in the refining of the policy before it is

deployed. This paper presents a mechanism for expressing and verifying security

policies. The methodology is based on an institutional framework (Cliffe et al.,

2007b) which provides a mechanism to capture and reason about “correct” and

“incorrect” behaviour within a certain context, which in this case is security. Based

on first-order logic, but inspired by deontic logic, the framework monitors the

permissions, empowerment and obligations of participants and generates violations

when policies are not adhered to. The framework is implemented in an action

language Inst (Cliffe et al., 2007b) which is based on the answer set semantics of

answer set programming (Baral, 2003; Gelfond and Lifschitz, 1988). I n section 2,

we reviewed the literature for related work. Section 3 describes a motivating

scenario, examination paper security, which we use to demonstrate the solution

approach. In section 4, we describe the institutional framework briefly but

sufficiently for understanding the approach. Policy representation in Inst is

presented in section 5 using the scenario described in section 3. Results are

presented in section 6 along with the discussion of the analysis of the results and we

finally conclude in section 7.

Considered as a fundamental protection strategy in information systems,

security policy has received much attention from researchers who have approached

its various problems in different ways in different domains. Bandara et al., (2003)

presented a translation of the policy and system behaviour specifications to a formal

notation based on standard event calculus and used reasoning techniques to identify

conflicts. While their approach produced useful results, it is not easy translating

specifications into standard event calculus logic. Model checking approach has also

been applied to some of the problems. For instance Ma et al., (2010) and Kikuchi et

al., (2007) used model checking to validate information system security policies.

The system behaviours were modelled as Kripke structure while the system

properties were described in linear temporal logic (LTL) formula. Security policy

verification was achieved by applying the model checker SPIN. Another approach

Gideon Bibu and Julian Padget ADSUJSR 04(1): April, 2016

140

based on decision tables, an incremental policy validation method was presented in

Graham et al., (2004). These approaches require a high level of background in logic

to be able to interact with the specifications. Also, Wahsheh et al., (2008) show how

Prolog was used to verify system correctness with respect to policies for high

assurance computing systems. However, our solution approach is based on answer

set programming (ASP) which has a number of advantages over traditional logic

programming languages for implementing event based systems. ASP offers a purely

declarative language, offering ways to model specifications without allowing the

programmer to control the search; ASP is as expressive as many other non-

monotonic logics, yet it provides a simpler syntax and well-developed and efficient

implementations; ASP is more expressive than propositional and first-order logic,

allowing us to elegantly encode causality and transitive closure (Pontelli, 2010).

ASP is intuitive, requires less background in logic, and its semantics is robust to

changes in the order of literals in rules and rules in programs. Also in comparison to

Prolog where solutions are computed by query answering which amounts to proof

search, ASP solutions are encoded in answer sets; that is, in models, hence model-

finding, rather than proof-finding (Brewka et al., 2011). This way, it offers us the

opportunity to make verifications in context, giving us answer models consisting of

a sequence of traces which we can easily interpret. Although ASP has been used in

authorization specifications (Wang and Zhang, 2007; Lee, Wang, and Zhang, 2015),

these works are focused on access control policies without considering the “social”

dimension of the security vulnerabilities.

In order to illustrate our approach to the problem of security policy

verification, we present here an example scenario. The motivation for this example

is that it is a part of a process which has clearly defined participant roles and

security policies associated with those roles. It is simple enough for the purpose of

illustration and also complete in the sense that it consists of the system goal, actors,

events, and the process. The process is also one that can easily be understood and

related to.

The model represents a segment of the process of preparing examination

papers. The model consists of the roles: head of department (hod), examination

officer (eo), course lecturer (lect), and the resources: exams server (svr) and a

question paper (paper01). The lect uploads the exams file to the secure server

dedicated for exam preparation. The svr sends acknowledgement to the hod. The

hod acknowledges and triggers eo to download and print the paper. The eo who is in

charge of the next and final stage of the preparation, downloads the paper from the

server, prints the required quantity for each paper and packages them securely ready

to be administered. From an insider perspective, the eo could be responsible for

misuse, where misuse is any action or behaviour that may lead to the leakage of the

exam paper, thereby compromising the confidentiality and integrity of the exams.

These behaviours would be those that violate the following security rules (policies):

pol 1. The hod is not permitted to download paper from the server

pol 2. The eo can only access the exam files and not store them on any external

storage device

pol 3. eo should delete his/her copy of the paper once it is printed

pol 4. A printed paper is considered secure when its instance is only available in the

server at the end of its lifecycle which is the printed state.

©Adamawa State University Journal of Scientific Research 04(1): April, 2016

 ISSN: 2251-0702

141

This example therefore clearly spells out the actors involved, in terms of

roles and the expected behaviour that would preserve the integrity and

confidentiality of the examination paper. We shall be using this example in the

subsequent sections of this paper.

Materials and Methods

Our approach is based on the definitions of institutional framework in

(Cliffe et al., 2007b) where an electronic institution is described as a multi-agent

system and the agent’s behaviour is governed by a set of published norms, rules or

regulations which bring about a set of expected behaviours for agents interacting in

a social context. It is assumed here that the norms and their expectations about the

behaviour of participating agents are explicit and can be written down in a form

which is machine processable. Institutional frameworks therefore provide a

mechanism to capture and reason about “correct” and “incorrect” behaviour within

a defined social context, which in this case is security. This therefore provides a

way to explore security vulnerabilities arising from behaviours of various actors

(humans, systems, processes) as they interact to achieve their goals. In applying this

framework to the problem of security, the system of interacting actors which

consists of humans and systems and their associated interactions (processes), and

the security policies which define the expected behaviour of the actors fits into the

description for the framework.

An institutional framework is formally defined as a 5-tuple

 where is a set of events, a set of fluents, a set of causal

rules, a set of generation rules and an initial state .

The agents of change in the (security) model are the actors, and it is the

actions they take that constitute the events, which are then interpreted by the

institutional rules and bring about a change in the institutional state (). Actions and

institutional states are modeled as events () and a set of fluents (i.e.),

where the state is a record of the effects of previous actions, and extant obligations,

powers and permissions. Expressing this abstractly, let denote a state of the

system (model) and denote an event that affects the system (model), then an

actor interacting with the model generates a trace:

that characterises a single trace system interaction. However, for verification we

need all possible traces. Therefore, given an initial system state and a state

transformer function , we can compute next states exhaustively. The

transformer function comes in two parts: the generation relation, denoted , and the

consequence relation . is responsible for recognising relevant real world events

and turning them into institutional events, and also for ensuring that all the

institutional events that ensue from an institutional event are also generated. is

responsible for the addition and deletion of fluents in the institutional state, arising

from all the events identified by . Hence, is the application of to the events

arising from the transitive closure of . We illustrate all of these elements,

expressed in the InstAL specification language, using the case study, in section 3.1.

Gideon Bibu and Julian Padget ADSUJSR 04(1): April, 2016

142

An answer set programming (ASP) problem typically starts with the

definition of a domain or class of problem about which we wish to reason. Such

definitions (written as answer-set programs) are constructed in such a way that each

possible “world” in the domain corresponds to an answer set of the program.

Queries may then be constructed over this domain in order to determine if particular

models are valid according to the definition by extending the program to limit the

answer sets produced to those which match the models being investigated.In using

ASP for reasoning about institutions, Cliffe et al.,(2007b) shows that the formal

model of an institution can be translated to ASP program such that the solutions of

the program, known as answer sets of the program, defined through the stable

model semantics (Gelfond and Lifschitz,1988)correspond to the traces of the

institutional framework. This is seamlessly achieved through the action language

Inst by mapping the action language to an answer set program (Cliffe et al.,

2007a).

Policy representation in Inst

In our example, three classes of policies can be identified:

i. policies that prohibit certain actions (pol1, pol2),

ii. policies that require events to occur in a certain order (pol3), and

iii. policy that state the final expectation of the system (pol4).

Using annotated fragments of the code, we describe how the specification of these

policies are achieved in Inst .

We start by presenting the declarations of some of the key features of the

specification. These include the type, events, and fluent declarations (figure 1). The

declaration of events consists of;

 Exogenous eventswhich express all observable real world events in the

model. These events may generate institutional events and cause changes to

the institutional state.

 Institutional eventsconsist of the various events that would be generated in

the institution framework as a result of the occurrence of exogenous events.

These events may initiate new facts in the institution, thereby resulting in a

change in the institutional state.

 Violation events declare events that would occur whenever there is a

violation in the system, such as the failure to satisfy an obligation.

These would enhance understanding as we describe the specifications of the

policies.

©Adamawa State University Journal of Scientific Research 04(1): April, 2016

 ISSN: 2251-0702

143

Figure 1: Types, predicates and events

With respect to the institutional framework, events or actions can occur and

hence affect the institutional state only when they are permitted. Therefore, using

the causal rules, we are able to express this as

It is also important to note that events that are not empowered cannot occur

even if permitted. This applies basically to institution events since exogenous events

are empowered by default. By empowerement we mean the capability of an event to

be brought about (generated) in the institution. Prohibitions are not explicitly

represented, they are rather implicitly represented by the absence of permission for

that event to occur. Therefore a prohibited event is simply not permitted and hence

would trigger a violation if it is performed. In our example, policies that prohibit

certain actions such as such as pol1 is represented by not permitting the hod to

perform a download operation. It is therefore expected, in verification that a

download operation by the hod should trigger a violation event. We express this as

i_download(hod,paper01) generates misuse(hod);

Policies that require events to occur in a certain order are captured in

Inst using obligations. Obligations are treated as fluents and expressed as

obl(event,deadlineevent,violationevent).

i_upload(Agent,Paper) initiates

perm(i_receive(Server,Paper)),

pow(i_receive(Server,Paper)),

perm(receive(Server,Paper));

i_upload(Agent,Paper) terminates

perm(i_upload(Agent,Paper)),

perm(upload(Agent,Paper));

This rule shows eventsthat
can cause changesin
institutional state.

This means the eventscan no
longer affectthe institutional
statessince they areterminated

type Agent;

type Paper;

type Server;

exogenous event

download(Agent,Paper);

exogenous event upload(Agent,Paper);

exogenous event delete(Agent,Paper);

violation event misuse(Agent);

fluentf_hasp(Agent,Paper);

fluentf_svrhasp(Server,Paper);

noninertial fluent secured(Paper);

inst event i_download(Agent,Paper);

inst event i_upload(Agent,Paper);

inst event i_delete(Agent,Paper);

inst event i_print(Agent,Paper);

These are the objects thatappear in
our model. This issimple
monomorphic typesystem

Some of the events that
identify key transition points in the

scenario

A violation event that could

betriggered by non-compliance

Some of the institutional states
thatcould be reached as events occur

Some of the institutional eventsthat could
be generated byexogenous events and
causechanges to institutional stateswhen
empowered and permitted

Gideon Bibu and Julian Padget ADSUJSR 04(1): April, 2016

144

This means that event is expected to occur before deadline event occurs else it

triggers a violation event. In our example, pol3is therefore expressed in terms of

obligations as follows;

It is convenient to be able to declare these as initial states of the institution. This

enables it to persist in the institution until it is terminated.

Pol6 is achieved by evaluating the states of the institution and expressing this as:

always secured(paper01) when not has(eo,paper01),

not has(hod,paper01), fsvrhas(svr,paper01), fprinted(paper01).

This is interpreted as: paper01 is secure when it is not the case that neither eo nor

hod has paper01 but svr has paper01 and paper01 is printed. If any of the stated

conditions fails, the security of the paper would be questionable. The lifecycle of

the paper here is considered to be the interval between when the paper was

uploaded by the lect and when the paper has been printed by the eo. Therefore the

point of evaluating this condition is at the end of the lifecycle which is specified in

the institution as an exogenous event deadline which generates the institutional

event end of process (paper01).

Results and Discussion

Having set out the institution framework and the domain specification, we

can use the model to examine the traces for both expected and unexpected

behaviours. The Inst reasoning tool can generate all the possible traces for the

encoded institution framework. Therefore in the analysis of the traces, we focus on

the ones that are of interest to us. In this case we focused on those that bother on

policy compliance.

The analysis is performed through a query file where we can restrict the

traces to the desired events pattern using the fact observed(Event, Time). Time here

is not in the sense of real time but in the sense of order in which events occur

relative to each other. The institutional timing starts with the creation event which

creates the institution at time instance i00. Timing of subsequent events follows

from here. To investigate policy compliance, the conditions for non-compliance are

presented in form of rules as follows:

Where each of the pol icies states the kind of events or event sequences

that would be considered a violation of the policy. According to policies pol1-pol2,

it is considered non-compliance whenever any of the events occur at any time

instant I. Policy pol3 is specific about the order in which the events should occur.

Event at time instant T1 is expected to occur before the event at time T2. Policy

initially

obl(delete(eo,paper01),

end of process(paper01),

misuse(eo));
if the event end of process

happens before delete,

violation event misuse will be

triggered

©Adamawa State University Journal of Scientific Research 04(1): April, 2016

 ISSN: 2251-0702

145

pol4 considers it non-compliant if it is the case that any of the agents A (i.e. eo and

hod) has the paper at the final institutional time instant . Taken that, the expected

sequence of events is:

Such a query specification will not return any result as expected. This implies that

the policies were complied with by the actors. However, testing for noncompliance

will mean altering the observed events. For example

.

.

observed(download(eo,paper01),i02).

.

.

Would mean eo downloading paper before hod deletes it, contrary to pol3. The

result of this is

which clearly shows violation events with their corresponding time instances and

also the non-compliant agents responsible for the violations.

Answer: 1

occurred(viol(deadline),i07)

occurred(viol(print(eo,paper01)),i05)

occurred(viol(download(eo,paper01)),i03)

noncomp(hod)

noncomp(eo)

SATISFIABLE

These lines show
theevents that
areviolated as a result
of non-compliance of
eo

The presence of
theseelements in the
answerset tells us that

the actions of hod and

eo are non-compliant

noncomp(eo,I) :- occurred(download(hod,P),I),

instant(I). (pol1)

noncomp(hod,I) :- occurred(download(eo,P),I),

instant(I). (pol2)

noncomp(A) :- occurred(download(eo,P),T1),

occurred(delete(hod,P),T2),

T1<T2, instant(T1), agent(A),

instant(T2). (pol3)

noncomp(A,F) :- holdsat(f_hasp(A),F),

agent(A),final(F). (pol4)

observed(createsecurexams,i00).

observed(upload(lect,paper01),i01).

observed(receive(svr,paper01),i02).

observed(download(eo,paper01),i03).

observed(print(eo,paper01),i04).

observed(delete(eo,paper01),i05).

observed(deadline,i06).

#hide.

#show noncomp(A,I).

#show noncomp(hod,I).

#show noncomp(A).

#show noncomp(A,F).

#show occurred(viol(A),I).

These rules define non
compliance, where

instant(I) indicate a

sense of time

None of the agents, eo

and hod should be in

possession of the
paperat the end of
theinstitution

Events are expected to
happen in this order

hides all answer sets

Outputs only
theseresults

Gideon Bibu and Julian Padget ADSUJSR 04(1): April, 2016

146

Another example we can test for is how the system is affected when a

required event does not happen at all. For instance, following from pol3, we can see

what happens if eo fails to delete the paper after printing. This means removing

observed (delete(eo,paper01),i05) from the observed events. This results in the

following;

Answer: 1

occurred(viol(deadline),i06))

noncomp(eo,i05)

insecure (paper01,i06)

SATISFIABLE

This shows that the event deadline occurring at time instant i06 is a
violation due to the non-compliance of the agent eo at time instant i05 making the
paper insecure at the last time instant i06.

Also, let us assume that in violation of pol2, the e o uploads the paper (we
take upload here to mean s t o r i n g the file on a device or even on email). We add
the fact observed(upload(eo,paper01),i04) to the list of observed events. This results
in

which also means that a violation occurred at time instant i04 triggered by the agent

eo and the paper is insecure at the instant i06. Further properties of the policy based

system can be tested in a similar way to verify the policy before implementation.

Conclusion

Organisations deploying computing and information systems would usually

formulate security policies that would ensure that the processes undertaken by

actors (employees and systems) are such that preserve the security of the

organisation’s resources. While computer system and networks security policy

research has received much attention, organisational security policies have received

less. This work therefore offers a contribution in this direction.

Another contribution is the provision of an intuitive methodology for the

representation of events (organisational processes) which allows us to verify

security policies guarding the secure enactment of processes. Our approach is based

on an institutional framework in which enactment of events and the consequent

changes in states lead to sequence of traces which provide a “database” that can be

queried for desired properties. We used an action language Inst to code the

system specifications and describe the query properties in answer set programming.

We showed the results of our some verification using a simple example. The

proposed solution will therefore be a useful tool for organisational security policy

designers.

In the future, we hope to extend this work by considering multiple

institutions. By this, we aim to analyse security policies across organisational

boundaries since organisational security policies differ from one organisation to

Answer: 1

occurred(viol(deadline),i06))

noncomp(eo,i05)

insecure(paper01,i06)

SATISFIABLE

The presence of this
item indicates the
paper is insecure at the

time instant i06

©Adamawa State University Journal of Scientific Research 04(1): April, 2016

 ISSN: 2251-0702

147

another and where they interact, there is also potential for security loopholes.

References
Bandara, A. K., Lupu, E. C., and Russo, A. (2003). Using event calculus to

formalise policy specification and analysis. In Policies for Distributed

Systems and Networks, 2003. Proceedings. POLICY 2003. IEEE 4th

International Workshop on (pp. 26-39). IEEE.

Baral, C. (2003). Knowledge Representation, Reasoning and Declarative Problem

Solving. Cambridge Press.

Brewka, G., Eiter, T., and Truszczyński, M. (2011). Answer set programming at

a glance. Communications of the ACM, 54(12), 92-103.

Cliffe, O., De Vos, M., and Padget, J. (2007a). Answer set programming for

representing and reasoning about virtual institutions. In Computational Logic

in Multi-Agent Systems (pp. 60-79). Springer Berlin Heidelberg.

Cliffe, O., De Vos, M., and Padget, J. (2007b). Specifying and reasoning about

multiple institutions. In Coordination, Organizations, Institutions, and Norms

in Agent Systems II (pp. 67-85). Springer Berlin Heidelberg.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., and Thiele, S.

(2008). Engineering an incremental ASP solver. In Logic Programming (pp.

190-205). Springer Berlin Heidelberg.

Gelfond, M., and Lifschitz, V. (1988). The stable model semantics for logic

programming. In ICLP/SLP (Vol. 88, pp. 1070-1080).

Gelfond, M., and Lifschitz, V. (1998). Action languages. Electronic Transactions

on AI, 3(16). 193–210

Graham, A., Radhakrishnan, T., and Grossner, C. (2004). Incremental validation of

policy-based systems. In Policies for Distributed Systems and Networks,

2004. POLICY 2004. Proceedings. Fifth IEEE International Workshop

on (pp. 240-249). IEEE.

Kemp, M. (2005). Barbarians inside the gates: addressing internal security

threats. Network Security, 2005(6), 11-13.

Kikuchi, S., Tsuchiya, S., Adachi, M., and Katsuyama, T. (2007). Policy

verification and validation framework based on model checking approach.

InAutonomic Computing, 2007. ICAC'07. Fourth International Conference

on (pp. 1-1). IEEE.

Lee, J., Wang, Y., and Zhang, Y. (2015). Automated reasoning about XACML 3.0

delegation using answer set programming. In CEUR-WS.

Ma, J., Zhang, D., Xu, G., and Yang, Y. (2010). Model checking based security

policy verification and validation. In Intelligent Systems and Applications

(ISA), 2010 2nd International Workshop on (pp. 1-4). IEEE.

Pontelli, E. (2010). Answer set programming in 2010: A personal perspective.

In Carro, M. and Peña, R. eds, Practical Aspects of Declarative

Languages (pp. 1-3). Springer Berlin Heidelberg.

Wahsheh, L. A., Leon, D. C. D., and Alves-Foss, J. (2008). Formal verification and

visualization of security policies. Journal of Computers, 3(6), 22-31.

Wang, S., and Zhang, Y. (2007). Handling distributed authorization with delegation

through answer set programming. International Journal of Information

Security, 6(1), 27-46.

