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ABSTRACT 

In this article, we prove some theorems on strong convergence and stability of 

Thianwan, Ishikawa and Mann iteration for quasi-contractive operator in convex 

metric spaces. Also, we show the convergence rate of the three iterations through 

computational results. 
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Introduction 

In mathematics, a metric space is a set for which distances between all 

members of the set are defined. Those distances, taken together, are called a metric 

on the set. A metric on a space induces topological properties like open and closed 

sets, lead to the study of more abstract topological spaces. 

Many problems in Mathematics and related field can be solved by finding 

fixed point of a particular operator and algorithms. Finding such points play a 

prominent role in a number of applications, this is evident in the work of Berinde 

(2007). In computational mathematics, an iterative method is a mathematical 

procedure that generates a sequence of improving approximate solutions for a 

particular class of problems. A specific implementation of an iterative method, 

including the termination criteria is an algorithm of the iterative method. An 

iterative method is called convergent if the corresponding sequence converges for 

any given initial approximations. A mathematically rigorous convergence analysis 

of an iterative method is usually performed; however, heuristic-based iterative 

methods are also common. In the problems of finding the root of an equation (or a 

solution of a system of equations), an iterative method uses an initial guess to 

generate successive approximations to a solution. In contrast, direct methods 

attempt to solve the problem by a finite sequence of operations. In the absence of 

rounding errors, direct methods would deliver an exact solution (like solving a 

linear system of equations by Gaussian elimination method). Iterative methods are 

often the only choice for nonlinear equations. However, these methods are often 

useful even for linear problems involving a large number of variables (sometimes of 

the order of millions) where direct methods would be prohibitively expensive (and 

in some cases impossible) even with the best available computing power. The 
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Picard iteration [Picard (1893)] has also been proved with many contractive 

conditions in the literature, one of such condition is the Zamfirescu (1972) operator 

given by: 

 

           (1.1) 

 
for all  and  and  are non-negative constants satisfying a 

. The Theorem is stated as follows: 

 

THEOREM 1.1: Let  be a complete metric space and  a mapping 

for which satisfying (1.1). Then  has a unique fixed point  and the Picard iteration 

 defined by = ,  converges to  for any arbitrary but fixed .  

When the contraction mapping conditions are weaker, then the Picard 

iteration will no longer converge to a fixed point of the operator, hence, other 

iteration procedures must be considered. In this case, the mapping under 

consideration will be called 

 
where  is a Banach space with a non-expansive operator . The non-expansive 

condition is of particular interest in Banach spaces if  is assumed to be only non-

expansive, that is, it needs not to have a fixed point. Two of the iterations used 

under the non-expansive conditions in Banach space are Mann and Ishikawa 

iterations. Mann (1953) defined a more general iteration in a Banach space setting 

satisfying quasi-nonexpansive operators. The Mann iteration is given as: 

                                (1.2) 

where  is a sequence of positive numbers in  Putting  in (1.2) 

reduces to Picard iteration = . Liu (1995) introduced the concept of Mann 

iteration process with errors by the sequence  defined as follows: 

                                                      (1.3) 

where { } satisfies  This certainly contain (1.1). The proof of the 

convergence of (1.2) and (1.3) in normed linear setting can be found in Rhoades 

(1993), Berinde (2004), Rafiq (2006) and Olaleru (2007). Ishikawa (1974), 

introduced another iteration which is a double Mann iteration and has better 

convergence rate than Mann iteration. It is given as: 

 
                                 (1.4) 

where  and  are sequences of positive numbers in  The original result of 

Ishikawa is stated in the following:  

Theorem: Let  be a convex compact subset of a Hilbert space 

 a Lipschitzian pseudocontractive map and . The Ishikawa 

iteration (1.4) satisfying: 
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i.  

ii.  

iii.  

converges strongly to a fixed point of Convergence and other related results 

concerning Ishikawa can be found in Hong-Kun (1992), Chidume (1994), Berinde 

(2004) and Koti et al., (2013).  

Another iteration, called Thianwan-iterative process, was introduced by 

Thianwan (2009) which is independent of Mann and Ishikawa iterations. It is 

defined in a normed linear space as follows: If  a normed space, the 

sequence { } in  is defined as: 

 
             (1.5) 

where  

In this paper, we shall be concerned with the strong convergence and 

stability results of Thianwan, Mann and Ishikawa iterations in a convex metric 

space using the quasi-contractive operator defined by Imoru and Olatinwo (2003). 

We shall also consider the rate of convergence of the three iterations using 

MATLAB for the numerical computations. 

Material and Methods 

In this section, we shall discuss the Thianwan-iterative, Mann and Ishikawa 

iterations in a convex metric space with quasi-contractive operator.  

 

Thianwan and Ishikawa Schemes 

Let  be a convex metric space and  be a closed subset of . 

Suppose  is a mapping of  into itself. For a sequence , the Thianwan-

iterative scheme is given by: 

    = ( , , ) 

                            (2.1) 

where  are sequences in [0, 1] with . Also, for 

, the Ishikawa iteration is defined as: 

                

               (2.2) 

 The linear setting of (3.1) and (3.2) are given, respectively, as 
       

               (2.3) 

And          
  

                          (2.4) 

Both iterations (2.1) and (2.2) become Mann iteration when : 
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.                          (2.5) 

The iteration (2.5) in linear setting is written as: 

              (2.6) 

 

Contractive-Type Operators  
Zamfirescu operators are mostly used for contractive-type operators for the 

study of existence of fixed point. It is stated as follow: 

THEOREM 2.3.1 Let  be a complete metric space and  is a 

Zamfirescu operator satisfying: 

        

(2.7) 

where , then, the sequence 

{ } converges to a unique fixed point. The contractive condition (2.7) also implies 

                            (2.8) 

where  

Osilike (1995) generalized the contractive condition (2.8) as follows: For 

, there exists  such that 

                            (2.9) 

Observe that when  in (2.9), we have condition (2.8). We shall employ the 

contractive condition defined by Imoru and Olatinwo (2003) which is more general 

than (2.7), (2.8) and (2.9). It is given as: 

                          (2.10)  

where  and  is a monotone increasing function with 

 

We shall use the following definition to discuss the concept of Stability in a convex 

metric space: 

 

DEFINITION 1: (Olatinwo, 2011) Let  be a convex metric space and 

 a self-mapping. Suppose that  is the set of 

fixed points of .  

Let  be the sequence generated by an iterative procedure involving 

 which is defined by: 

                            (2.11) 
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where  is the initial approximation and  is some function having 

convex structure such that . Suppose that { } converges to a fixed point 

p of Let  and set  . .. Then, the 

iterative procedure (3.11) is said to be T-stable or stable with respect to  if and 

only if  implies  p. 

We shall need the following Lemma in the proof of our main results:  

Lemma 1 (Berinde, 2004) Let  be a real number such that  and 

 is a sequence of positive numbers such that 0, then for any 

sequence of positive numbers {  satisfying: 

 

we have  0. 

 

Results and Discussion 

In this section, we shall discuss the convergence and stability of the schemes (2.1) 

and (2.2) satisfying the contractive condition (2.10). At the end of computational 

results, the rate of convergence of Thianwan, Ishikawa and Mann iterations were 

tabulated. 

These are given in the following theorems:  

THEOREM 3.2.1 Let be a nonempty closed subset of a convex metric space  

and be a self-map of  satisfying the contractive-type condition (2.10) with 

. For  and  is a sequence defined by (2.2), then 

(i) the mapping T satisfying (2.10) has a unique fixed point. 

(ii) the sequence defined by (2.1) converges strongly to the fixed point 
 

PROOF 

(i) Suppose  and , then 

 
This implies that, or   

Since  is positive and 0< <1, then  by implication 

. Therefore,  has a unique fixed point. 

(ii) Suppose  and  by (2.1) and (2.10) we have 

 

 
                                       (3.1) 
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Also, from (2.1) 

 

 

                           (3.2) 

Using (4.2) in (4.1), we have 

           (3.3) 

 
where  and 

 for  We have, 

 
Hence, by Lemma 1, we have .  

Therefore, the Thianwan-iteration (2.1) converges strongly  

THEOREM 3.2.2 Let  be a nonempty closed subset of a convex metric space  

and  be a self map of  satisfying the contractive-type condition (2.10) with 

. Let  and { } be a sequence defined by (2.2), then 

(i) the mapping T satisfying (2.10) has a unique fixed point. 

(ii) the sequence defined by (2.2) converges strongly to the fixed point 
 

PROOF 

(i) Suppose , ∈ , then by (2.10) 

 
Implying that  and  

Since  is positive, then  is false.  

Hence,  if and only if  = . 

Therefore,  has a unique fixed point. 

 

(ii) Suppose  and  by (2.2) and (2.10) we have 

 

                                (3.4) 
Also, from (2.2), we have 

 
(3.5) 

Substituting (3.5) into (3.4) becomes  
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(3.6) 

Let, 

 

 
By the application of Lemma 1 to (3.6), we have 

 
Therefore, { } converges strongly to  

 

COROLLARY 1 Let ( ) be a convex metric space and  be a closed subset 

of . Let  be a self-map of  satisfying (2.10) with  

then, 

(i) the mapping  satisfying (2.10) has a unique fixed point. 

(ii) the sequence  defined by (2.5) converges strongly to the fixed 

point  

The proof of this Corollary is direct from Theorem 3.2.1 and Theorem 3.2.2 when 

 in  and  The stability results are as follows: 

 

THEOREM 3.2.3 Let  be a convex metric space and  a nonempty 

closed subset of  Suppose T is a map of  into itself and satisfies the 

condition (2.10) with . Then, for , the sequence  defined by 

(2.1) is -stable. 

 

PROOF 

Let be an arbitrary sequence in  and set  

where . Suppose  then 

 

 

 

 

 

 
Conversely, suppose , then 
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Since then and hence  

 
Therefore, the scheme (2.1) is T-stable. 

 

THEOREM 3.2.4 Let  be a nonempty closed subset of a convex metric space 

 and  be contrative-type operator satisfying (2.10) with . 

Then, for , the sequence  defined by (2.2) is -stable. 

 

PROOF 

Let  an arbitrary sequence, 

where . 

Suppose  then 

 

 

 

 

 

 
Conversely, suppose , then 

 

 

 

 
Since  

 
 

Therefore, the scheme (3.2) is T-stable. 

 

THEOREM 3.2.5 Let be a convex metric space and  a nonemptyclosed 

subset of  Suppose  is a map of  into itself and satisfies the condition 

(2.10) with . Then, for , the sequence { defined by (2.5) is -

stable. 
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PROOF 

Let  be an arbitrary sequence in  and set  

Suppose  

 

 

 

 
Since  and  then 

 
Conversely, suppose  then 

 

 

 

 
 and hence, 

 
Therefore, the scheme (2.5) is T-stable. 

 

Numerical Examples 

We compare the convergence rate of the three schemes with the following two 

examples: 

Example 1 Let be defined by , an oscillatory function 

with  initial point  and . 

Example 2 Let be defined by , an increasing 

function with fixed point  and initial guess using 

. 

Solutions: The solutions to the two examples are computed using MATLAB and 

are presented in tables 1 and 2. 

 

TABLE 1: Results for Example 1 

N Mann iteration               Ishikawa iteration     Thianwan iteration 

1 

2 

3 

4 

5 

6 

7 

         2.1250                         3.0625                        1.2978 

         1.0221                          1.8465                        1.0199 

         0.9893                          1.1125                       1.0049 

         1.0065             0.9758                          1.0018 

         0.9957                         1.0098                       1.0008 

         1.0031              0.9955                        1.0004 

         0.9977                          1.0024                        1.0002 
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8 

9 

10 

11 

12 

13 

14 

15 

… 

28 

29 

30 

         1.0018              0.9986                        1.0001 

         0.9986              1.0009                       1.0001 

         1.0012                           0.9994                        1.0001 

         0.9990                           1.0004                        1.0001 

         1.0008                           0.9997                        1.0001 

         0.9993                           1.0002                        1.0001 

         1.0006              0.9999                       1.0001 

         0.9995              1.0001                         1.0001 

 · · ·                 · · ·               · · · 

         1.0002              0.9999                        1.0001 

         0.9999              1.0001                         1.0001 

         1.0001                                0.9999                          1.0001 

 

Remark 1: It is observed, from Table 1 of the function  with 

, that the Thianwan, Ishikawa and Mann iterations converge in 8, 

14 and 29 iterations respectively. Therefore, Thianwan-iteration is faster in terms of 

convergence rate than Ishikawa and Mann iterations. 

 

Table 2: Results for Example 2 

N Mann iteration                       Ishikawa iteration        Thianwan  iteration 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

… 

18 

19 

20 

     6.7500                                      6.6166                           6.5625 

     6.5167                                      6.3260                           6.2670 

     6.1405                                      6.1579                           6.1156 

     6.0897                                      6.0721                           6.0472 

     6.0561                                      6.0315                           6.0184 

     6.0345                                      6.0133                           6.0070 

     6.0209                                      6.0054                           6.0026 

     6.0125                                      6.0022                           6.0009 

     6.0075                                      6.0009                           6.0003 

     6.0044                                      6.0003                           6.0001 

     6.0026                                      6.0001                           6.0000 

     6.0015                                      6.0000                           6.0000 

      · · ·                                              · · ·                               · · ·  

     6.0001                                      6.0000                           6.0000 

     6.0000                                      6.0000                           6.0000 

     6.0000                                      6.0000                           6.0000 

 

Remark 2 Here in Table 2 of the function , an increasing function 

with fixed point  and initial guess using It is 

observed that the Thianwan, Ishikawa and Mann iterations converge at 11, 12 and 

19 iterations respectively. 
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Conclusion 

The prove of strong convergence and stability results of Thianwan-iteration, 

Ishikawa iteration and Mann iteration for quasi-contractive operator in convex 

metric spaces were considered. Our results show that the Thianwan-iteration 

converges faster than both Ishikawa and Mann iterations. Furthermore, Ishikawa 

iteration is faster than Mann iteration in terms of convergence rate. 
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