
                                                                                                                                    
 

37 

 

Adamawa State University Journal of Scientific Research 
Volume 7 Number 1, April, 2019; Article no. ADSUJSR 0701004 

ISSN:2705-1900(Online); ISSN: 2251-0702 (Print) 

http://www.adsujsr.com 

 

An Alternative Computational Approach for the Simulation of Autonomous Dynamical Differential 

Equations with One, Two and Three Fixed Points 
 

J. Sunday1,*; G. M. Kumleng1 & G. C. Agbataobi2 
1Department of Mathematics, University of Jos, Jos-Nigeria 
2Department of Mathematics, Adamawa State University, Mubi-Nigeria  

*Contact: sundayjo@unijos.edu.ng;   joshuasunday2000@yahoo.com 

 

Abstract 

Autonomous Dynamical Differential Equations (ADDEs) with one, two and three fixed points have been found to be 

applicable in various fields of human endeavor. There is therefore need to find approximate solutions to such 

differential equations since some of them do not have solutions in closed form. In view of this, we are motivated to 

develop an alternative computational approach called the Non-Standard Finite Difference Method (NSFDM) for the 

simulation of such problems. In developing this alternative computational approach, three major steps were adopted. 

These include the reconstruction of the numerator function, the reconstruction of the denominator function and the 

nonlocal representation of nonlinear terms that may occur in the ADDE. The research went further to analyze the 

basic properties of the NSFDM which include positivity of solutions, elementary stability, dynamical consistence, 

monotone dependence on initial value and monotonicity of solutions. Finally the ADDEs with one, two and three 

fixed-points were simulated using the new approach in order to test its computational reliability.  
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Introduction 

Over the recent decades, many physical phenomena 

have been modeled using ADDEs. These equations 

have received some remarkable attention due to its 

classical applications in sciences and engineering. 

According to Erdi (2015), one of the most important 

reasons for using NSFDM is to be able construct 

discrete models which have correct qualitative 

behavior with the corresponding differential 

equation. Although there is no general procedure to 

achieve this point, there have been some powerful 

results for some types of differential equation. For 

instance when considering first order ADDE, 

numerical instabilities occur in discrete modeling if 

the linear stability properties of any fixed-points of 

difference equation is not in concordance with those 

of the corresponding differential equation.  

 

Autonomous dynamical systems are mainly 

represented by a state that evolves in time. A 

dynamical system/equation is a system/equation in 

which a function describes the time dependence of a 

point in a geometrical space. Examples include 

mathematical models that describe growth, decay, 

swinging of a clock pendulum, the flow of water in a 

pipe, the number of fish each time in a lake, etc. The 

input as well as the current state of a dynamical 

system determines the evolution of the system. An 

important characteristic of a dynamical system is 

whether it is continuous or discrete. Continuous 

systems (often called flows) are given by differential 

equations whereas discrete systems (often called 

maps) are specified by difference equations. This 

research however will focus on the latter. 

 

A highly efficient computational approach (NSFDM) 

shall be formulated for the simulation of ADDE of 

the form, 

00 )(),( ytyyf
dt

dy
         (1) 

where     nTn Ttyyyy  ,:,...,, 0

21
, 

  nnTnffff  :,...,, 21
 is 

differentiable and 
nt 0 , 

n is the set of n -

tuples, where n -tuple is a sequence (or finite ordered 

list) of n elements, where n
 
is a non-negative 

integer. 

 

We also assume that the ADDE (1) satisfies the 

property below which guarantees the existence and 

uniqueness of its solution. 
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The property states thus; a function 
nnf :  

is said to be Lipschitz on 
nB   with Lipschitz 

constant 0L  if, 

ByxyxLyfxf  ,,)()(    (2) 

If f  is Lipschitz on 
n  , then f

 
is said to be 

globally Lipschitz. If f  is Lipschitz on every 

bounded subset of  
n  , then f  is said to be locally 

Lipschitz. The concept of Lipschitzian functions is 

important in the proof of existence and uniqueness 

results for many problems in mathematics. The 

theorem below follows from this definition. 

 

Theorem 1 (Kama, 2009) 

Let 
nnf : be globally Lipschitz. Then, 

there exist a unique solution )(ty to (1) for all 0t

. Hence, equation (1) defines an ADDE on 
n . 

See, Kama (2009) for proof. 

Let 
nnF : . Consider a sequence  

0kky  

defined recursively by, 

)(1 kk yFy        (3) 

 

We refer to such a map or iterate as explicit mapping 

since 1ky  is given explicitly in terms of ky . 

Sometimes 1ky is not given by an explicit mapping 

of the form (3), but instead 1ky  is obtained from 

ky through an implicit mapping of the form, 

0),( 1  kk yyG     (4) 

where 
nnnG : . 

 

Note that for (3), uniqueness of the solution sequence 

 ky  is guaranteed due to the explicit nature of the 

map, whereas for (4) it is necessary to establish 

existence and uniqueness of a solution 1ky  when 

ky  is given. 

According to Mickens (1994), the general form of 

NSFDM can be written as, 

),(1 kk yhFy     (5) 

Note that equation (3) is of the form (5). 

 

Definition 2 (Borowski and Borwein, 2005) 

A differential equation is autonomous if it does not 

depend on the variable of differentiation (often time), 

that is, such that there is no explicit occurrence of the 

independent variable in the equation. 

 

Definition 3 (Simulation) 

Simulation is the use of mathematical model to 

recreate a situation, often repeatedly, so that the 

likelihood of various outcomes can be more 

accurately estimated. It is also the imitation of the 

operation of real-world process or system over time. 

The behavior of a system that evolves over time is 

studied by developing a simulation model. Source: 

wikipedia.org/wiki/Simulation. 

 

Definition 4 (Anguelov and Lubuma, 2003) 

The fixed-point (equilibrium) of the differential 

equation (1) is any zero y  of the function 

  0: yff . 

 

Definition 5 (Anguelov and Lubuma, 2001) 

A finite difference scheme is called NSFDM, if at 

least one of the following conditions is satisfied; 

i) in the discrete derivative, the traditional 

denominator is replaced by a non-

negative function   such that,  

                
0),()( 2  hashOhh        (6) 

ii) non-linear terms that occur in the 

differential equation are approximated 

in a non-local way i.e. by a suitable 

functions of several points of the mesh. 

For example 

1

2

11

3

11

2 ,,,   kkkkkkkkk yyyyyyyyyyy

  

 

A lot of authors have proposed different NSFDMs for 

the simulation of ADDE of the form (1), see the 

works of Sunday (2010), Sunday, Ibijola and 

Skwame (2011), Liu, Clemence and Mickens (2011), 

Sunday, James and Bakari (2015), Wood (2015), 

Garba et al. (2015), to mention a few. 

 

Formulation of the Alternative Computational 

Approach (NSFDM) 

We shall formulate an alternative computational 

approach called the NSFDM for the simulation of 

ADDEs with one, two and three fixed points. This 

alternative computational approach (which is a 

difference equation) is meant to have the same 

qualitative properties as the corresponding 

differential equation. According to Patidar (2005), 

the construction of NSFDM is not always straight 

forward and there are no general criteria for doing so. 

Thus, the alternative computational approach shall be 
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formulated by modifying the numerator and 

denominator functions to suit the qualitative behavior 

of the corresponding differential equations by 

assuming that, 

)(

)(1

h

yhy

dt

dy kk




 

     (7) 

where )()( handh  (functions of the step-size 

th  ) are respectively the numerator and 

denominator functions,  

kk ytyandhktt  )(0 . The 

)()( handh   have the following properties, 









)()(

)(1)(

2hOhh

hOh




    (8) 

 

The conventional discrete representation for the first 

derivative takes hand   1  for standard 

finite difference methods as 0h . It therefore 

implies that there should be a systematic way for 

constructing a denomination function for a NSFDM. 

Also, unless the differential equation has 

‘dissipation’, the numerator function is usually equal 

to one. This has also been verified by Mickens 

(2005). 

Suppose the fixed-points of (1) is given by, 

 niy
i

,...,2,1,
)(

  

 

where n  may be bounded. The fixed-points are the 

real n  solutions to the equations, 

  0yf      (9)  

Let iP  be defined by, 

)( i
yy

i
dy

df
P



      (10) 

and 
*P  as, 

 niPMaxP i ,...,2,1,*     (11)  

 

The alternative computational approach that 

approximates the ADDES of the form (1) is given by 

the expression, 

)(
)(

)(1

k

kk yf
h

yhy







   (12) 

where the denominator function is modified as, 

*

* ),(
)(

P

Ph
h


      (13) 

This form replaces the simple ''h  function found in 

the standard finite difference method, 

h

yy

dt

dy kk 
 1

    (14) 

Note that ),( *Ph  in equation (13) has the 

properties  

*

2** 1
0),,(),(

P
hPOhPh     (15) 

If we consider an autonomous dynamical system 

where the independent variable t  is time, it follows 

that iP  have units of inverse time and a set of time 

scales can be defined by means of the relations, 

*

* 1
;,...,2,1,

1

P
Tni

P
T

i

i       (16) 

Thus, 
*T  corresponds to the smallest time scale and 

this shows that the denominator function is in the 

range 
** ),(0 TTh  .  

Therefore, substituting equation (13) into (12), we 

obtain the alternative computational approach as, 

)(
),(

)(

*

*

!

k

kk yf

P

Ph

yhy
















 

That is, 

)(
),(

)(
*

*

1 kkk yf
P

Ph
yhy 











   (17) 

Equation (17) is the alternative computational 

approach called the NSFDM that gives correct linear 

stability property for any ADDE of the form (1).  

 

Analysis of Basic Properties of the Alternative 

Computational Approach (NSFDM) 

The analysis of basic properties of the alternative 

computational approach formulated shall be carried 

out in this section. These properties include positivity 

of solutions, elementary stability, dynamical 

consistence, monotone dependence on initial value 

and monotonicity of solutions.  

 

Let us assume that the function ),( yhF  in equation 

(5) has a continuous derivative with respect to both 

variables for  yh ,0  and satisfies, 
















)(
),0(

),0(

yf
h

yF

yyF

     (18) 
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Another assumption made is that the difference 

scheme (5) is consistent with the ADDE (1). We note 

that consistency implies that (18) is satisfied when y  

is the solution of the ADDE (1). 

 

Positivity of Solutions 
Definition 6 (Wood, 2015) 

The NSFDM (5) is called positive if, for any value of 

the step-size h  and 
nt 0 , its solution remains 

positive, that is   kallfory n

k . 

 

Positivity of solution is an important property in 

applications to biological systems and various 

physical systems where negative values are generally 

not meaningful. This property has been satisfied 

based on the trajectory of the graphical results that 

shall be presented in Figures 1, 2 and 3 below. 

 

Elementary Stability 

Definition 7 (Wood, 2015) 

The NSFDM (5) is called elementary stable if, for 

any value of the step-size h , its only fixed-points  y  

are the same as the equilibria of the differential 

system (1) and the local stability properties of each 

y  are the same for both the differential system and 

the discrete method. 

This fundamental property has also been satisfied by 

the alternative computational approach (17). 

 

Dynamical Consistence 

Definition 8 (Wood, 2015) 

The NSFDM (5) is said to be dynamically consistent 

with the ADDE (1) if it is both positive and 

elementary stable. 

Thus, the alternative computational approach (17) is 

dynamically consistent. 

 

Theorem 2 (Anguelov and Lubuma, 2003)  

The NSFDM (5) is stable with respect to monotone 

dependence on initial value if, 

0,,0
),(





hy

y

yhF k

 

  (19) 

It is important to note that the alternative 

computational approach (17) satisfies Theorem 2.  

Proof  

Let the numerator function   and the denominator 

function 
*

* ),(

P

Ph
 of the alternative computational 

approach (17) be defined by, 


















*

* ),(

1

P

Ph     (20) 

Substituting (20) in (17), gives 

)(1 kkk yfyy     (21) 

Now that (21) is of the form (5), we have  

)(),( kkk yfyyhF     (22) 

 

Differentiating equation (22) partially with respect to 

y  gives, 

 
y

yf
yf

yy

y

y

F


















 )(
)(

)()( 
    (23) 

For all y  and 0h , equation (23) satisfies 

(19). This therefore shows that the alternative 

computational approach (17) is stable with respect to 

monotone dependence on initial value. 

 

Monotonicity of Solutions 

Due to the autonomous nature of the differential 

equation (1), its solution has a relatively simple 

structure with regard to their monotonicity. Every 

solution is either increasing or decreasing on the 

whole interval  ,0t . The increasing and 

decreasing solutions are separated by fixed-points. 

 

Definition 9 (Anguelov and Lubuma, 2003)  

The NSFDM (5) is stable with respect to the property 

of monotonicity of solutions if for all 0y , the 

solution ky  of the NSFDM (5) is increasing or 

decreasing whenever the solution )(ty  of the ADDE 

(1) is increasing or decreasing. This property has 

been satisfied by the alternative computational 

approach (17) in view of the graphical results 

obtained. 

 

Results 

We shall apply the alternative approach (NSFDM) 

developed in simulating some ADDE with one, two 

and three fixed points. Consider the problems below: 

 

Problem 1 (ADDE with One Fixed-Point: The 

Growth Model) 



                                                                                                                                                                                                                                                                    

                                                                                                                              Joshua et al., ADSUJSR, 7(1):37-45, April, 2019 

41 

 

A bacteria culture is known to grow at a rate 

proportional to the amount present. After one hour, 

1000 strands of the bacteria are observed in the 

culture; and after four hours, 3000 strands. Find the 

number of strands of the bacteria present in the 

culture at time : 0 1t t  . 

Let )(ty  denote the number of bacteria strands in 

the culture at time t , the initial value problem 

modeling this problem is given by, 

694)0(,366.0  yy
dt

dy
   (24) 

The exact solution is given by, 
tety 366.0694)(      (25) 

Source:  Sunday, Yusuf and Andest (2016) 

Comparing (24) with (1), we see that 

yyf 366.0)(      (26) 

and 0
)1(

y is the only fixed-point. Then, on the 

application of (10), we obtain 

366.0
0

1
)1(


 yy

dy

df
P    (27) 

From equation (11), 

366.0* P        (28) 

The numerator function   and the denominator 

function   for equation (24) are defined by,  














366.0

1)(

1

366.0

*

* he

P

hP



    (29) 

Substituting (29) into (17), gives 

k

h

kk y
e

yy )366.0(
366.0

1 366.0

1 






 
     (30) 

 

Equation (30) is the alternative computational 

approach/NSFDM for the autonomous dynamical 

growth model (24). Equation (30) is of the form (5). 

Simulating Problem 1 using the newly formulated 

alternative computational approach/NSFDM, we 

obtain the graphical result presented in Figure 1. The 

simulation result is compared with the exact solution 

of the problem. 

 

Problem 2 (ADDE with Two Fixed-Points: The 

Logistic Model) 

The logistic model (an extension of growth model) is 

the law that regulates with good approximation the 

growth rate of a certain population number as 

function of time. The model is based on the 

assumption that the population evolves in an 

environment with limited resources with no 

immigration or emigration phenomena. Let )(tx  be 

the population size at time t , the law that regulates it 

can be expressed by the first-order ADDE, 











k

x
rx

dT

dx
1         (31) 

where 0k  is the carrying capacity of the 

system/environment, 0r is a parameter called 

intrinsic growth rate ( dbr  ,where b  is the 

instantaneous birth rate and d  the instantaneous 

death rate). 

 

We therefore carry out non-dimensionalization 

(scaling) of equation (31). Since the model in (31) 

has four parameters, we reduce the number of 

parameters by scaling as follows.  Let, 

kyxand
r

t
T       (32) 

Substituting equation (32) in (31), gives 


















 k

ky
rky

r

t
d

kyd
1

)(
    (33) 

which reduces to,  

)1( yy
dt

dy
      (34) 

Equation (34) is called the logistic model. The 

equation can be solved by the method of separation 

of variable to give the exact solution, 

teyy

y
ty




)1(
)(

00

0
   (35) 

where, 00 )( yty  . 

 

It is important to state that this equation possess a 

very simple asymptotic dynamics: all solutions with 

positive initial condition ( 00 y ) will eventually 

approach the carrying capacity k . Therefore, 

population size will eventually be stabilized to k  in 

the long run if population dynamics initially either 

overshoot or undershoot the carrying capacity. 

 

Here, we shall consider a special case of equation 

(34) given by substituting 1 kr  in equation 

(31). This gives, 

5.0)0(),1(  yyy
dt

dy
   (36) 

with the theoretical solution, 
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)1(5.0

5.0
)(

te
ty


     (37) 

Source: Sunday, Yusuf and Andest (2016) 

Comparing (36) with (1), we obtain 

)1()( yyyf      (38) 

The equation has two fixed points given by, 












1

0

)2(

)1(

y

y
     (39) 

On the application of (10), we obtain 





















1

1

1

2

0

1

)1(

)1(

yy

yy

dy

df
P

dy

df
P

    (40) 

From equation (11), 

1* P       (41) 

The numerator function   and the denominator 

function   for equation (36) are defined by,  
















1

1)(

1

)1(

*

* he

P

hP



     (42) 

Substituting (42) into (17), gives 

 )1)(1(11 k

h

kk yeyy  

    (43) 

 

Equation (43) is the alternative computational 

approach/NSFDM for the autonomous dynamical 

logistic model (36). Equation (43) is of the form (5). 

Simulating Problem 2 using the newly formulated 

alternative computational approach/NSFDM, we 

obtain the graphical result presented in Figure 2. The 

simulation result is compared with the exact solution 

of the problem.  

 

Remark: we can see from the Figure 2 that the curve 

is asymptotic about the carrying capacity 1k . 

 

Problem 3 (ADDE with Three Fixed-Points: The 

Combustion Model) 

Consider the ADDE with three fixed points given by, 

5.0)0(),1( 2  yyy
dt

dy
  (44) 

 

Equation (44) is an elementary model for 

combustion. According to Kama (2009), despite the 

simple nature of (44), its solution cannot be written in 

a closed form.  

Comparing (44) with (1), we obtain 

)1()( 2yyyf      (45) 

The equation has three fixed points given by, 



















1

1

0

)3(

)2(

)1(

y

y

y

     (46) 

On the application of (10), we obtain 





























2

2

1

1

3

1

2

0

1

)3(

)2(

)1(

yy

yy

yy

dy

df
P

dy

df
P

dy

df
P

   (47) 

From equation (11), 

2* P        (48) 

The numerator function   and the denominator 

function   for equation (44) are defined by, 
















2

1)(

1

2

*

* he

P

hP



     (49) 

Substituting (49) into (17), gives 

)(
2

1
1

2

1 



 






 
 kkk

h

kk yyy
e

yy     (50) 

Equation (50) is the alternative computational 

approach/NSFDM for the autonomous combustion 

model (44). Equation (50) is of the form (5).  

 

Simulating Problem 3 using the newly formulated 

alternative computational approach/NSFDM, we 

obtain the graphical result presented in Figure 3. The 

simulation result is compared with that of Sunday et. 

al. (2016) since the combustion model does not have 

a closed form (exact) solution. 
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Figure 1: Graphical Result for Problem 1  

 

 
Figure 2: Graphical Result for Problem 2 
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Figure 3: Graphical Result for Problem 3 

 

Discussion of Results 

From the graphical results presented Figures 1, 2 and 

3 (for Problems 1, 2 and 3 respectively), it is obvious 

that the alternative computational approach (i.e. the 

NSFDM) is computationally reliable. This is because 

from the simulation result, it is clear that the method 

effectively approximates the ADDEs. 

 

Conclusion 

The computational approach/NSFDM adopted in this 

research has been shown to effectively simulate 

ADDEs with one, two and three fixed points. The 

need for this approach came up due to some 

shortcomings of existing methods in which the 

qualitative properties of the exact solutions are not 

usually transferred to the numerical (approximate) 

solutions. The paper went further to analyze the basic 

properties of the method which include positivity of 

solutions, elementary stability, dynamical 

consistence, monotone dependence on initial value 

and monotonicity of solutions.  
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