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Abstract 

In this paper, we compare the stability regions of two block integrators developed by Odekunle, 

Adesanya and Sunday (2012A, 2012B) for the solution of first-order ordinary differential 

equations. The approximate solution used in deriving these integrators is a combination of power 

series and exponential function. This analysis is made basically to buttress the fact that one 

integrator tends to perform better than the other if the latter has a larger stability region than the 

former. Some basic properties of the two block integrators are further examined. 
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Introduction 

One block integrator is more stable 

than the other if the latter has a larger 

Region of Absolute Stability (RAS) than the 

former. In this paper, we compare the 

stability region of the block integrator 

developed by Odekunle, Adesanya and 

Sunday (2012A) with that of Odekunle, 

Adesanya and Sunday (2012B). Both 

integrators were derived for the solution of, 

' ( , ), ( )y f x y y a a x b     ……..(1)    

where f is continuous within the interval of 

integration [ , ]a b . We assume that 

f satisfies Lipchitz condition which 

guarantees the existence and uniqueness of 

solution of (1). The problem (1) occurs 

mainly in the study of dynamical systems 

and electrical networks. According to 

Kandasamy et al. (2005) and Sunday (2011), 

equation (1) is used in simulating the growth 

of populations, trajectory of a particle, 

simple harmonic motion, deflection of a 

beam etc. 

 Development of Linear Multistep 

Methods (LMMs) for solving ODEs can be 

generated using methods such as Taylor’s 

series, numerical integration and collocation 

method, which are restricted by an assumed 

order of convergence, Ehigie et al. (2011).  

 Block integrators for solving ODEs 

have initially been proposed by Milne 

(1953) who used them as starting values for 

predictor-corrector algorithm, Rosser (1967) 

developed Milne’s method in form of 

implicit integrators, and Shampine and 

Watts (1969) also contributed greatly to the 
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development and application of block 

integrators. More recently, authors like 

Butcher (2003), Zarina et al. (2005), 

Awoyemi et al. (2007), Areo et al. (2011), 

Ibijola et al. (2011), Chollom et al. (2012), 

have all proposed LMMs to generate 

numerical solution to (1). These authors 

proposed integrators in which the 

approximate solution ranges from power 

series, Chebychev’s, Lagrange’s and 

Laguerre’s polynomials.  The advantages of 

LMMs over single step methods have been 

extensively discussed by Awoyemi (2001). 

 

The Two Block Integrators 

In deriving the two block integrators, 

interpolation and collocation procedures 

were used by choosing interpolation point 

s at a grid point and collocation points r  at 

all points giving rise to 1s r    system 

of equations whose coefficients are 

determined by using appropriate procedures. 

The approximate solution to (1) is taken to 

be a combination of power series and 

exponential function. For Odekunle, 

Adesanya and Sunday (2012A), the 

approximate solution is, 
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while for Odekunle, Adesanya and Sunday 

(2012B), the approximate solution is, 
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where  ,x a b , the 'a s are real unknown 

parameters to be determined and  is a real 

number. 

They arrived at the block integrators of the 

form,  
(0) ( ) ( )m n n mA hd hb  Y Ey f y F Y  ……..(4) 

 

where for Odekunle, Adesanya and Sunday 

(2012A), 

   1 2 3 2 1, , , , ,
T T

m n n n n n n ny y y y y y     Y y
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m n n n n n n nf f f f f f     F Y f y
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and for Odekunle, Adesanya and Sunday (2012B), 
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   1 2 3 4 3 2 1, , , , , , ,
T T

m n n n n n n n n ny y y y y y y y       Y y
, 

   1 2 3 4 3 2 1( ) , , , , ( ) , , ,
T T

m n n n n n n n n nf f f f f f f f       F Y f y , 
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Zero-Stability of the Two Block 

Integrators 

Definition 1  

The block integrator (4) is said to be zero-

stable, if the roots , 1,2,...,sz s k  of the first 

characteristic polynomial ( )z  defined by 
(0)( ) det( )z z  A E  satisfies 1sz   and 

every root satisfying 1sz   have 

multiplicity not exceeding the order of the 

differential equation. Moreover, as 0,h   

( ) ( 1)rz z z     where   is the order of 

the differential equation, r  is the order of 

the matrices (0) andA E  (see Awoyemi et al. 

(2007) for details).  

For Odekunle, Adesanya and Sunday 

(2012A), 
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             2
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Solving for z in (5) gives 0 1z or z  . Hence, the block integrator is zero-stable. Similarly, for 

Odekunle, Adesanya and Sunday (2012B), 
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Thus, solving for z in (6) gives 0 1z or z  . Hence, the block integrator is also zero-stable. 

 

STABILITY REGIONS OF THE TWO 

BLOCK INTEGRATORS 

To determine the absolute stability regions 

of the two block integrators, we adopt the 

boundary locus method. This is achieved by 

substituting the test equation, 

'y y   ……….(7) 

into the block formula (4). This gives, 

(0) ( ) y ( ) ( ) ( )m n n mr r h y r h r   A Y E D BY  

 …..(8) 

Thus, 

(0) ( ) ( )
( )

( ) ( )

m n

n m

Y r y r
h r

y r Y r

 
  

 

A E

D B
   ………(9) 

Writing (9) in trigonometric ratios gives, 

(0) ( ) ( )
( )

( ) ( )

m n

n m

Y y
h

y Y

 


 

 
  

 

A E

D B
   ……..(10) 

where 
ir e  . Equation (10) is our 

characteristic or stability polynomial. 

Applying (10) to the block integrators 

developed by Odekunle, Adesanya and 

Sunday (2012A)  and (2012B), we obtain 

the stability polynomials,  

 (2012 )

(cos 2 )(cos ) (cos 2 )(cos3 )(cos )
( )

1 1
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and 

 (2012 )

(cos 2 )(cos3 )(cos ) (cos 2 )(cos3 )(cos 4 )(cos )
( )

1 1
(cos 2 )(cos3 )(cos ) (cos 2 )(cos3 )(cos 4 )(cos )

5 5

Bh
      



      






    ………..(12) 

respectively. The table below summarizes other basic properties of the two block integrators. 

 

 

 

 

 

Table 1: Comparism of Some Basic Properties of the Two Block Integrators 

S/No. Block Integrators Order Consistence Convergence 

1.  Odekunle, Adesanya and Sunday (2012A) 4 Consistent Convergent 

2.  Odekunle, Adesanya and Sunday (2012B) 5 Consistent Convergent 

 

The stability regions of the two block integrators are as shown in the figures below. 
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Fig. 1: Stability Region of Odekunle, Adesanya and Sunday (2012A)  
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Fig. 2: Stability Region of Odekunle, Adesanya and Sunday (2012B)  

From the 3D point of view, the RAS of the two block integrators are given by; 

  Fig. 3: Stability Region of Odekunle, Adesanya and Sunday (2012A)  
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  Fig. 4: Stability Region of Odekunle, Adesanya and Sunday (2012B)  
 

Conclusion 

Finally, it is clear from the presentation 

above that the stability region of Odekunle, 

Adesanya and Sunday (2012A) is a sub-

region of that of Odekunle, Adesanya and  

 

 

Sunday (2012B). Little wonder, the 

performance of the latter is better than that 

of the former on problems of the form (1). 

See Odekunle, Adesanya and Sunday 

(2012A, 2012B) for details on numerical 

implementations.   
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