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Abstract 

Pareto is a continuous distribution which has several applications in real life fields including the extreme value 

events. Hence, in this paper, the maximum likelihood (ML) and method of moment (MOM) estimations are 

proposed to estimate the shape parameter estimates for Pareto Type I distribution. The BIAS, Mean Square Error 

(MSE), and the Standard Error (SE) of the shape parameter estimates for both the two methods were obtained based 

on different simulated sample sizes. The scale parameter of Pareto distribution is treated as a fixed value. In this 

paper, the data is contaminated with 5% and 10% of outliers to investigate the effect of the outliers on the parameter 

estimates. The results show that when the sample size was large, the parameter estimates were more reliable and 

accurate. However, in the presence of outliers, the method of moment is better than the maximum likelihood 

estimation evident by having the smallest standard errors.  
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Introduction 

Vilfredo Pareto, (born July 15, 1848, Paris, France-

died August 19, 1923, Geneva, Switzerland) (Arnold, 

2015). Vilfredo Pareto was an Italian economist and 

sociologist who was known for his theory on mass 

and elite interaction as well as for his application of 

Mathematics to economic analysis (Chhetri et al., 

2017). In 1906, Vilfredo Pareto (Dunford et al., 

(2014); Bhatti et al., (2019)), introduced the concept 

of Pareto Distribution when he observed that 20% of 

the pea pods were responsible for 80% of the peas 

planted in his garden. He related this phenomenon to 

the nature of wealth distribution in Italy, and found 

that 80% of the country`s wealth was owned by about 

20% of its population. However, this was described 

in terms of land ownership. The Italian observed that 

80% of the land was owned by a handful of wealthy 

citizens, who comprised about 20% of the population. 

 

The practical applications of the Pareto Distributions 

are enormous in many fields like; Business 

Management, Company`s Revenues, Employee 

Evaluation, Insurance, Survival Analysis, Computer 

Science, Economics, Better Decisions, Biomedical, 

Financial Risk Management, etc., (see details in 

Mohamed et al., (2018); Alzaatreh et al., (2012); 

Thiago et al., (2017)). 

The probability density function of Pareto 

distribution according to (Ihtisham et al., 2019) can 

be written as follows: 

 (     )  
   

    
                  ( ) 

Where,      and     are the scale and the 

shape parameters respectively,   is the random 

variable such that    . In this study, the scale 

parameter is constant and equals 1. As a 

consequence, the Model (1) above becomes 
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As well as, the variance of the Model (2) above is given as follows: 
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The cumulative density function (CDF) of Model (2) 

above is provided as follows: 

  (     )    ( )                     ( ) 

The behavior of Pareto distribution is determined by 

the shape parameter  . Hence, it is considered as the 

most important quantity in Pareto distribution. This 

distribution is usually known as the Pareto 

distribution, and we will soon relate it to the Pareto 

principle. However, this term also known and refers 

to as related truncated distribution (Huang et al., 

2013). 

 

The social sciences have found that the Pareto 

distribution embodies a useful power law. The Pareto 

Distribution is most often presented in terms of its 

survival function, which gives the probability of 

seeing larger values than x. (This is often known as 

the complementary CDF, since it is 1-CDF. It is 

sometimes called the reliability function or the tail 

function). The survival functions of a Pareto 

distribution. 

 

In the simulation of the random variable experiment, 

select the Pareto distribution. Vary the shape 

parameter and note the shape and location of the 

density function. For selected values of the 

parameter, run the simulation 1000 times with an 

update frequency of 10 and note the apparent 

convergence of the empirical density to the true 

density. 

The aim of this paper is to propose maximum 

likelihood and method of moment estimators to 

estimates for Pareto Type I Distribution. However, 

the BIAS, Mean Square Error and Standard Error of 

the shape parameter estimates for both methods based 

on different simulated sample sizes were obtained, 

where the results were visualized in Tables (1-3) and 

Figures (1-3).  

 

Pareto distributions in firm size and income occur 

under very limited assumptions on the distribution of 

underlying primitives. Unlike in previous theories, 

large firms or incomes can appear instantaneously 

and result from an arbitrarily small level of ex ante 

heterogeneity. In contrast, economists’ current 

understanding of why Pareto distributions emerge 

falls into two categories. The first theory works 

through a “transfer of power law”. One Pareto 

distribution can be explained by assuming that some 

other variable is distributed according to a Pareto 

distribution; for example, entrepreneurial skills 

(Charles, 2015), firm productivities (Gómez-Déniz 

and Calderin-Ojeda (2014); Perla and Tonetti 

(2014)), or firm size by Benhabib and Bisin  (2018). 

A functional form for the production function also 

needs to be assumed, which preserves the Pareto 

functional form, such as a power function. The 

second theory holds that Pareto distributions result 

from a dynamic, proportional, “random growth” 

process, following Luckstead and Devadoss (2014) 

law. In this theory, many firms or incomes are large 

because they have been hit by a long and unlikely 

continued sequence of good idiosynchratic shocks 

(Ihtisham et al., (2019); Atkinson and Voitchovsky 

(2010); Arnold (2014); Akinsete et al., (2016); or 

Luttmer (2007)). 

 

The Beta-exponentiated Pareto distribution (BEP) 

was investigated by Zea et al. (2012), using Mahdavi 

and Kundu (2017), method providing different shapes 

for the density and hazard functions. The BEP 

distribution has several sub-models. The MLE 

method was used to estimate the parameters and to 

derive the observed information matrix. A bladder 

cancer data set was utilized to illustrate the flexibility 

of the proposed model. The simplicity of these two 

models, and the fact that Hassan et al., (2018) model 

was not purposefully developed to generate Pareto 

distributions, in fact suggest that there might be 

something more general about joint production with 

complementarities that leads to Pareto generating 

production functions.  
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Materials and Methods 

Maximum Likelihood Estimation 

The likelihood estimation method is one of the 

common methods which is used for estimating the 

parameters. In this particular Pareto distribution, the 

likelihood function is (Ihtisham et al., 2019): 

               (         )  ∏
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As a result, the log-likelihood is obtained as: 
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By using the partial derivative with respect to  , it gives  
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Set the Model (6) above to be zero and solve it for   to obtain the MLE of   
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Method of Moment 

Let            be a random sample from a Pareto 

distribution with probability density function 

(Gómez-Déniz and Calderin-Ojeda 

(2014),    (     )  
 

    
. 

It can be observed that the mean of Pareto 

distribution with scale parameter equals 1 is 
 

   
. 

Hence, by setting the mean of Pareto distribution to 

be equal to the sample mean  ̅ we obtained 
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In this paper, different sample sizes are generated 

from Pareto distribution with parameters       

  and the shape parameter estimates are obtained and 

compared. 

 

The BIAS, Mean Square Error and Standard Error 

BIAS is an estimator in finite samples. In general, 

BIAS is computed as in (Kosmidis, (2014); 

Zavershynski, (1017)): 

 

BIAS     ˆE ,                  (9) 

where  is population mean and ̂  is its estimator. 

Note: We say that ̂  is unBIASed estimator if  

  .0ˆ Bias  While, the Mean Square Error is 

defined as in (Kosmidis, (2014); Zavershynski, 

(2017)): 
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The sample variance is one estimator of .2  It is 

defined as in (Kosmidis, (2014); Chernick, M. R., 

(2012)): 
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where  nxxxx ,...,,, 321  are the samples and x is 

the sample mean. Therefore, the square root of the 

variance is called the Standard Error, denoted  ̂SE . 
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 Results and Discussion 

The R Studio version 3.4.3 (2018) was used for 

simulation study to compare the performances of 

both MLE and MOM methods for data without 

outliers and in the presence of outliers with both 

percentages of 5% and 10%. The parameters  ,    are 

set equal to 1 and 3 as the true parameters of Pareto 

model. In the presence of outliers, the simulated data 

is contaminated from uniform 

distribution     (    ). The simulation for each 

sample size involves a total of 1000 replications. The 

two estimation methods such as MLE and MOM 

were then applied to the data. The outcomes of 

simulation study are summarized in Tables (1-3). It 

can be observed that with the increase in the 

percentage of outliers, the standard errors of the 

preceding methods decrease for various sample sizes. 

It can be seen that the BIAS of both MLE and MOM 

increases with the increase in the percentage of 

outliers and MOM is less affected in the presence of 

outliers. The effect of outliers on the standard errors 

of the parameter estimates is displayed in Figures 1-

3. It can be observed that MLE is less affected for 

clean data. However, in the presence of outliers, 

MOM is better than MLE evident by having the 

smallest standard errors. 

 

Table 1: BIAS, MSE, and standard errors of the parameter estimates for clean data, without outliers 

SAMPLE SIZE METHOD ESTIMATES BIAS MSE SE 

50 MLE 3.0607 0.0607 0.2096 0.4537 

 MOM 3.1011 0.1011 0.2387 0.4780 

100 MLE 3.0222 0.0222 0.0971 0.3109 

 MOM 3.0445 0.0445 0.1109 0.3301 

200 MLE 3.0161 0.0161 0.0467 0.2155 

 MOM 3.0293 0.0293 0.0551 0.2330 

400 MLE 3.0106 0.0106 0.0240 0.1545 

 MOM 3.0213 0.0213 0.0294 0.1701 

500 MLE 3.0104 0.0104 0.0170 0.1298 

 MOM 3.0194 0.0194 0.0209 0.1432 

1000 MLE 3.0093 0.0093 0.0091 0.0949 

 MOM 3.0134 0.0134 0.0123 0.1102 

 

Table 2: BIAS, MSE and standard errors of the parameter estimates for data with 5% outliers 

SAMPLE SIZE METHOD ESTIMATES BIAS MSE SE 

50 MLE 2.1691 0.8309 0.7502 0.2446 

 MOM 1.4635 1.5365 2.4068 0.2141 

100 MLE 2.0055 0.9945 1.0133 0.1557 

 MOM 1.3526 1.6474 2.7222 0.0915 

200 MLE 2.0053 0.9947 1.0011 0.1084 

 MOM 1.3421 1.6579 2.7516 0.0551 

400 MLE 1.9995 1.0005 1.0067 0.0761 

 MOM 1.3363 1.6637 2.7693 0.0375 

500 MLE 2.0002 0.9998 1.0043 0.0686 

 MOM 1.3367 1.6633 2.7678 0.0343 

1000 MLE 2.0009 0.9991 1.0007 0.0487 

 MOM 1.3356 1.6644 2.7710 0.0233 
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Table 3: BIAS, MSE and standard errors of the parameter estimates or data with 10% outliers 

SAMPLE SIZE METHOD ESTIMATES BIAS MSE SE 

50 MLE 1.5132 1.4868 2.2298 0.1392 

 MOM 1.1943 1.8057 3.2639 0.0576 

100 MLE 1.5035 1.4965 2.2486 0.0949 

 MOM 1.1879 1.8121 3.2848 0.0340 

200 MLE 1.4985 1.5015 2.2587 0.0649 

 MOM 1.1851 1.8149 3.2942 0.0232 

400 MLE 1.5010 1.4990 2.2493 0.0471 

 MOM 1.1835 1.8165 3.2999 0.0156 

500 MLE 1.4981 1.5019 2.2574 0.0424 

 MOM 1.1830 1.8170 3.3016 0.0142 

1000 MLE 1.4977 1.5023 2.2577 0.0287 

 MOM 1.1822 1.8178 3.3045 0.0098 

 

 

 
Figure 1: The effect of 0% outliers on the standard errors of the parameter estimates for different sample sizes. 

 

 
Figure 2: The effect of 5% outliers on the standard errors of the parameter estimates for different sample sizes 
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Figure 3: The effect of 10% outliers on the standard errors of the parameter estimates for different sample sizes. 

Conclusion 

The main objective of this paper is to compare the 

estimates of the shape parameter for both MLE and 

MOM in the presence of leverage points in the 

simulated Pareto distribution’s data set. The data is 

divided into two types namely, data without outliers 

and data with outliers. It can be observed that for 

clean data, the MLE performance is better than the 

MOM. Nevertheless, for data with outliers, the MOM 

outperforms the MLE evident by having the smallest 

standard error estimates for all sample sizes. 
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