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ABSTRACT 
The accurate modeling of a nonlinear system using a Takagi-Kang-Sugeno Fuzzy 
Inference System requires an algorithm that can train the fuzzy inference system to 
minimize error(s) due to on-line data.  In this research, Adaptive-Network-Based 
Fuzzy Inference controller is optimized with Genetic Algorithm.  In a hybrid 
neuro-fuzzy model which is the heart of the controller, there is no guarantee that 
the neural network learning algorithm converges and the tuning of fuzzy inference 
system will be successful. The Gaussian bell (gbell) membership functions of the 
output of the Savannah Sugar Power Plant Boiler system, steam pressure-to-turbine 
parameters are optimized with genetic algorithm. Each variable has a degree of 
participation in every fuzzy set, based quantitatively on a membership function. 
The genetic algorithm is implemented in MATLAB 7.10 environment. The 
individual parameters are encoded as vectors of real numbers which are used for 
creating the Genetic Algorithm based Adaptive Neuro-Fuzzy Inference System 
controller. The tracking capabilities of Adaptive Neuro-Fuzzy Inference System 
controller  and Genetic Algorithm based Adaptive Neuro-Fuzzy Inference System 
controller was compared, the Genetic Algorithm based Adaptive Neuro-Fuzzy 
Inference System controller tracking showed a better steam pressure-to-turbine 
stability than the Adaptive Neuro-Fuzzy Inference System controller; the robusttest 
of the Genetic Algorithm based Adaptive Neuro-Fuzzy Inference System controller 
clearly shows that the optimized controller is better suited for Savannnah Sugar 
Power Plant control and can be applied to similar power plants. 
 
Keywords: Hybrid, Neuro-Fuzzy, Takagi-Kang-Sugeno, Fuzzy Inference System 

and Genetic Algorithm. 

 

Introduction 
The major powerful point in Adaptive Neuro-fuzzy Inference (ANFIS) systems 

is easy application of expert knowledge on the subject domain. However, in most 
cases this empirical information is not accurate enough to build an optimal system, 
and further proper tuning is required (Ebrahimi & Tabatabavakili (2007). If this 
tuning is done manually, this procedure results in numerous consultations with 
experts and long trial and error process, which still does not guarantee an optimal 
system; hence, the need for use of genetic algorithm(GA), which determine in 
advance (off-line) the parameters of the membership functions along each axis.  

Based on the inherent characteristics of GAs, it has been suggested for 

numerous applications such as pattern recognition, robotics, biology, and medicine. 

These algorithms have also been suggested for various digital signal processing 

applications, for example, in adaptive estimation of time delay between sampled 

signals (Ebrahimi & Tabatabavakili (2007), and (Myr et al, (2006) fingerprint 
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matching (Abutale  & Kamel (1999) and pattern recognition(Abutale  & Kamel 

(1999) and speech recognition (Kwong, et al.,1996). 

This paper presents a neuro-fuzzy controller where its Gaussian bell 

membership function of boiler output parameters can be tuned off-line using 

Genetic Algorithm. The controller design approach combines the merits of fuzzy 

logic theory, neural networks and genetic algorithms. The proposed neuro-fuzzy 

network does not require a priori knowledge about the system and eliminates the 

need for complicated design steps like manual tuning of input-output membership 

functions, and selection of fuzzy rule base. 

 

MATERIALS AND METHODS 

The Savannah Sugar Company limited Numan (SSCN) thermal power plant 

boiler supplies 3200kPa steam pressure to a turbine which rotates the generator at 

6000rpm for the production of 4.8 MW electrical power. The steam is admitted to 

the turbine via high pressure side through a governor regulated valve. The turbine 

rotor coupled to the generator by a coupling is responsible for converting steam 

pressure energy into mechanical energy that rotates the turbine-generator shafts for 

electrical power production as shown in figure 1.  
 
 

Figure 1: Schematic Diagram of SSCN Power Plant Control loops.  
 

Genetic Based Anfis Controller Design 

In this section, the development of the control strategy for control of various 

parameters of SSCN thermal power plant such as the oil flowrate, feedwater 

flowrate, and steam pressure to turbine for the generation of electrical power is 

presented using the concepts of GA based ANFIS controller embedded into SSCN 

simulink in MATLAB environment. The simulink is obtained from the SSCN 

thermal power plant models (Gumpy and Jiya,2013): 
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The control scheme diagram of plant is shown in figure 3. The Genetic 

algorithm (GA) is incorporated to optimize the ANFIS controller for optimal 

performance as shown in figure 2. 

 

 

Figure 2:  Genetic Tuning of Single Input Single Output Neuro-Fuzzy Controller 
(Mona et al., 2011) 

 
The nonlinearity of the power plant can be cancelled by using the inverted 

model. However, in estimating the plant model, the boiler input(s) and output with 

the overall power plant output forms the inputs to the controller as shown in figure 

3. 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3: Block Diagram of SSCN Inverse Controller (Gumpy and Jiya, 2013)   

 

As shown in figure 3, the plant‟s output data of steam pressure to turbine and 

electrical power forms the two input columns of the ANFIS1 and ANFIS2 

controllers with the fuel flow rate and feedwater flow rate as outputs respectively, 
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for clarity only one controller estimate is shown. The block diagram for the control 

of SSCN thermal power plant is shown in figure 4. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 4:  Block Controlled diagram of SSCN Thermal (Gumpy and Jiya, 2013) 
 

Where 

1 is the first error with respect to oil flow rate, 

2 is the second error with respect to feed water flow rate, 

fm


is oil flow rate into boiler furnace in kg/s, 

fwm


is feed water flow rate into boiler drum in kg/s, 

sP is the boiler steam pressure to turbine in kPa, 

eP is the power plant generated electrical energy in MW. 

 refsP is the referenced expected boiler steam to turbine steam pressure in kPa 

 

Adaptive Neuro-Fuzzy Inference (ANFIS) Controller Design 

In a hybrid Neuro-Fuzzy System (NFS), a neural network and a fuzzy system 

are combined into one homogeneous structure. Neural networks (NN) have strong 

learning capabilities at the numerical level; while fuzzy system, on the other hand, 

has a good capability of interpretability and can also integrate expert's knowledge. 

The hybridization of both the paradigms yields the capabilities of learning, good 

interpretation and incorporating prior knowledge Babuska, (1999). 

ANFIS unit comprises of a fully connected feed forward multi-layer NN. The 

number of inputs to the network equals the number of state variables, and the 

number of neurons in the output layer equals the number of control actions applied 

to the system. The backpropagation training algorithm with the generalized bell 

activation function is employed and the weights are initialized with small random 

numbers. Since it is required to emphasize those actions with a better “goodness" 
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value and de-emphasize the others with lesser credit, the learning rate is formulated 

as a function of the measure of “goodness “of the control action. The steepest-

descent algorithm is used for modification of the weights. 

ANFIS design starts with a pre-structured system; the membership function 

(MF) of input and output variables contains more information that NN has to drive 

from sampled data sets. The rules are in the linguistic forms and so intermediate 

results can be analyzed and interpreted easily. The modification of rules is possible 

during the training. Thus, combining the two methods will results in a neuro-fuzzy 

controller. The structure of the ANFIS is a five-layered structure illustrated in 

Figure 5. 

The ANFIS controller based on two inputs and single output architecture is 

shown in figure 5 
 

 

 

 

 

 

 

 

 

Figure 5: ANFIS Architecture Source (Jang et el., 1997)  

 

Figure 5 shows a general diagram of TSK Fuzzy model realization. 

This Connectionist structure not only can house fuzzy logic rules and 

membership functions but also perform fuzzy inference. A typical fuzzy rule in this 

TSK model has the form 

If 1
x is 1

A AND 2
x  is 1

B , AND 1
x is n

A   AND n
x  is n

B Then y = f ( x ) 

The function y = f(x) is a polynomial in the input variables 1
x , 2

x ,…, n
x . The 

layer-by-layer processing of input-output data is as follows:  

 

Layer 1: Each node is adaptive assigned a fuzzy membership value using 

membership functions to form a fuzzy set.  
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where 

 

denotes the output of layer 1 and the ith node ,  

 

 are the crisp input to node i,  

 

     Ai, Bi are the membership grades of the Membership functions respectively. 

 

 Layer 2: In this fixed layer, every node multiplies the input signals, denoted by 

“  ” and represents the rule nodes and the output O2,i  represents the firing strength 

of a rule and is computed as: 

 

                                                         (5) 

 

Layer 3: This fixed layer consists of the averaging nodes, which is labelled as 

“N” and computes the normalized firing strength equal to: 

 

 

                                                                         (6) 

 

 

 

 where iw  is the weight linking layer 2 to layer 3 

 i = 1, 2. 

 

Layer 4: The node is adaptive and the function of this layer is to compute the 

contribution of each ith rule towards the total output and the function can be 

defined as: 

 

 

                                                 (7)  

 

  

where  

i =1and 2 for two inputs 

wi  is the output weight of Layer 3 and {pi, qi, ri} is the 

 output or consequent linear parameter set. 

 

Layer 5: This layer has a fixed single output node, which computes overall 

output of the ANFIS 
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as:     

 

              

               (8) 
 

 

 

 

 

The computation of these parameters (or their adjustment) is facilitated by a 

gradient vector, which provides a measure of how well the fuzzy inference system 

is modeling the input/output data for a given set of parameters. 

Input variables are represented by membership functions in antecedent part. 

The process of obtaining values of the inputs and finding the numeric 

representation values of membership functions is defined as fuzzification process 

(Reid, & Renshaw, 1971; Kurosh, 2006 & Luis, 1994). 

 

ANFIS Inverse Model Control Law 

Generally, it is difficult to find the inverse function, 1f in an analytical from. 

It can be found by numerical optimization (Kwong, et al., 1996). ANFIS is a 

suitable hybrid numerical optimization method adopted in this research for building 

the inverse model.  

 

Let the general nonlinear model of the plant be represented as 

 

                          (9) 
 

where  ku is plant current input,  ref
ky  

 
is the plant‟s output at the sample 

time and the function f represents the nonlinear mapping of the neuro-fuzzy model. 

The inputs of the estimated model are given by plant‟s measured input and 

output data pairs (see figure 5). 
 

 (10)   
 

  
                                         

The objective of inverse control is to compute for the current state   kx  the 

control input,  ku , such that the system‟s output is equal to the desired (reference) 

output  kr . The dynamic order of the system is represented by the number of 

lags nu and ny. 
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This can be achieved if the process model (4) can be inverted according to: 
 

                         (11)   
 
 

An objective function for the process can be defined as  
                                                             

                           
                        (12) 

 

The minimization of J  with respect to  ku gives the control corresponding 

to the inverse function. This approach directly extends to MIMO systems. 

 

This research is using ANFIS-TSK modelling, considering a TSK model 

with the following input-output data rules 

 
 

                           (13)     
 

 
 
 
 
 
 

 
Where 

i = 1, ..., k are the rules, nA  nB , are fuzzy sets and 
ij

a , 
ij

b , 
i

c
are crisp 

consequent parameters. 
 

Denote the antecedent variables, that is, the lagged outputs and inputs 

(excluding  ku ), by:   

                                                                                                   
 

  (13b) 
 

 
The output  ky  of the model is computed by the weighted mean formula:                                                       
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Where i is the degree of fulfilment of the antecedent given by 

 
 
 
   (15) 
 
 

The consequent part of equation (14) is given by  
 
 
                                    (16) 

 
As the antecedent of equation (14) excludes the current input term,  ku , 

the model output equation (16) contains  ku  term. To see how to demonstrate 

that, degree of fulfilment can be normalize which deals with the controller rule 

base. 
                                                                   
 
                     (17) 
    

 
Substituting (9) and equation (11) into equation (8), one can have   

      
                       (18) 
 
 

 
 
 

Equation (18) can be written in general terms as: 
                                (19) 

 
 
The goal of the control is that the output,  

              
                               (20) 

 
The corresponding input in terms of equation (20) can be obtained as 

          
                               (21)  
 
 

Substituting for   kxg  and   kxh from equation (17) into equation 

(20), the inverse-model control law will be given as  
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Genetic Algorithm Based Neuro-fuzzy controller 

For Genetic- Adaptive- Neuro-Fuzzy Inference System (GANFIS) to work 

in unison, embedded hybridization has to be employed to facilitate their function.  

The ANFIS controller receives fuzzy inputs via the NN, where it is processed to 

produce fuzzy output(s) while the genetic algorithm tunes the fuzzy sets which are 

used in rule base formation (Figure 4). The control system has an input,  ku and 

an output, y . The ANFIS controller consists of the fuzzification phase which is 

achieved using Fuzzy logic to create fuzzy sets that are required for the rule base 

formation while the inference phase involves using neural network (NN) to infer 

the inputs which are fuzzy to provide the required input weights for updating the 

system data. The deffuziffication phase is the weighted average of the NN outputs, 

thus producing a crisp value as the controller output,  ku . 

The ANFIS controller is formulated using GA approach where the inputs 

membership functions of the controller parameters are initially randomized, tuned 

and optimized simultaneously. The fitness of the corresponding ANFIS is 

formulated on the basis of the response of the plant model via a predefined 

performance function see figure 6, (Seng, et al.,1999). 

 
 
 
 
 

 
 
 

 
 
 
 
 
 

 
Figure 6: Block diagram of TS fuzzy model (Ribhan, et al., 2008) 
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                      (23) 
 
 

 
The error is generated by subtracting the plant on-line output ( y ) from the 

plant set-point ( y sp ) which is mathematically represented as equation 8. 

The controller block diagram in figure 8 shows the determination of initial 

error for controller.  

In this research, Takagi and Sugeno-Kang (TSK) fuzzy model is adopted; 

the structure of TSK fuzzy model consists of three main components: antecedent 

part, rule base and consequent part. Input variables are represented by membership 

functions as in standard fuzzy system. In the consequent part, mathematical 

functions are used instead of membership functions. The structure can be seen as a 

combination of linguistic and mathematical modelling (equation 5).  

From equation (1), where Rntx )( and Rmtu )( are the system state and input 

vectors. The TSK model of the system is represented by the system‟s state 

variables by a control rule 

IF 1
X is 1

A and  and n
X is 

n
A Then   

                          (24) 
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The activation generalized bell (gbell) membership function employed for 
the fuzzification process, is  

 
         

                                                                                                         
                                                     

                        (25) 
 
 

Where 
 

are points on the universe of discourse       X , 

 

 is the center of membership function  i
x

i
A

 , 

 

 is the width of membership function      i
x

i
A

  and 

 

is the gbell slop membership function slope. 

 

The following important characteristics of the membership functions 

contained within fuzzification are as follows: 

Since membership functions divide the Universe of Discourse (UoD) into 

sections, it is important that the membership functions cover the entire UoD. This 

ensures that every possible crisp input has an associated linguistic term which can 

be used for processing within the Inference Engine. 

Linguistic terms reflect the plant operator‟s analysis of the input output 

space and description for a range of values of the UoD. The flexibility of 

incorporating existing knowledge into the ANFIS controller makes it easier for the 

design of the ANFIS-GA controller. 

The first issue that arises in a GA optimization is coding of the parameter 

set.  There are several ways to encode the parameter set for optimizing fuzzy logic. 

For example, both rule base as well as the membership function parameters can be 

encoded in one GA representation (Seng, et al., 1999 and Ribhan, et al.,2008 ).  

Similarly, one could use different representations for membership functions and 

rule base. In this paper, one single GA chromosome represents the parameters of 

membership functions for inputs. A bell shaped membership function is 

characterized as shown in equation (17) by mean or center (c) and variance or 

width (a) and a slope (b).  

     The aim of genetic algorithms is to use simple representations to encode 

complex structures and simple operations to improve these structures. The gbell 

MF equation 23 is considered as the objective function of this research. The three 

variables a, b and c are taken as the genetic population individuals that are 

optimized, based on figure 4 and equation 17, the SSCN ANFIS data are subjected 

to Genetic algorithm optimization by Genetic program based on the genetic 

algorithm shown in figure 7. 
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Figure 7: Flowchart of Genetic algorithm (Sabbir, 2008). 

 

 

The embedded GA based ANFIS controller in the Savannah Sugar Company 

thermal power plant simulink is shown in figure 8. 

 

Figure 8: SSCN Thermal Power Plant GA based ANFIS controlled Simulink. 
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Result and Discussion 

  In order to evaluate the overall controller efficiency, after tuning of the MF 

parameters, 200 random test data is generated with their fitness values. The 

Optimal values are obtained from 100 generations as the fitness versus generation 

plot shows in Figure 10. 

The fuzzy rule base of the GA based ANFIS controller is achieved by using 

the optimized ANFIS controller Gaussian-bell shaped MF parameters. The 

optimized parameters shown in Figures 11, 12 and 13 are the predefined data base 

used in training the FIS in the Fuzzy toolbox, thus producing the required GA 

based ANFIS controller that is embedded in the SSCN simulink model for plant 

control. 

 

 

Figure 10: SSCN Boiler Output, Gaussian Bell Membership Function parameter 

learning by Genetic Algorithm 

 

Function parameter learning by Genetic Algorithm 

The best parent of the GA is a =   3458kPa, b = 1564kPa, and c = 3194kPa 

Elapsed time is 21.323565 seconds. 

 

The GA optimized individual chromosome parameters of „a‟, ‟b‟ and „c‟ of 

the antecedent part of the input membership functions are shown in figures 11, 12 

and 13 respectively 
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Figure 11: Concatenated width („a‟) parameter of Input gbell Membership Functions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Concatenated slope („b‟) parameter of Input gbell Membership Functions 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Concatenated centre („c‟) parameter of Input gbell Membership Functions 
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Simulation of SSCN thermal power plant simulink with GA based controller 

produced the controlled steam-to-tubine with acceptable deviation from the plant‟s 

set-point as shown in figure 14.  

 

 
 Figure 14: ANFIS-GA controlled steam-to-turbine of SSCN thermal power plant 

 

GA based ANFIS controller control tracking of the steam pressure to turbine 

which is achieved by changing semi-points at different times, showed that the 

controller was able to control the steam to turbine adequately with much deviation 

from set-point as shown in figure 15 

Figure 15: SSCN Thermal Power Plant GA based ANFIS Controller Robust test 
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To verify the advantage of the GA based ANFIS controller over ANFIS 

controller, it be beneficial to produce ANFIS controller boiler output control 

tracking as shown in figure 16. Here the controlled steam to turbine has significant 

deviation from set-point than Ga based Controller 
 

 
Figure 16: SSCN Thermal Power Plant ANFIS Control Set Point Tracking 

 
 

The SSCN Electrical power output generated by GA based ANFIS controller 

is as shown in figure 17 
 

 
Figure 17: SSCN Thermal Power Plant GA Based ANFIS Controlled Electrical Power 
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Conclusion 

 To facilitate this research, mathematical models were developed to represent 

the steam pressure and electrical power generated by the power system. The 

models were used for dynamic simulation studies with data taken from the existing 

power plant. This provides flexibility in the research work whereby studies were 

carried out to improve the performance and efficiency of the existing plant.  

The fuzzy rule base of the ANFIS-GA controller is achieved by using the 

optimized Gaussian-bell shaped MF parameters of the power plant‟s inputs. The 

optimized parameters formed the predefined data base which is used in training a 

FIS in the Fuzzy toolbox where rules are automatically generated for the required 

ANFIS-GA controller which is embedded in the SSCN simulink model for 

simulation. 

Applying the set-point pressure (3200 kPa) of the SSCN power plant, 

simulation of the power plant showed that boiler steam pressure to turbine will 

generate the required power plant‟s designed electrical power. The embedded 

ANFI-GA controller into the SSCN simulink model shows that there is stable 

control at the start of operation to the end of each shift‟s operation. This controlled 

steam pressure to turbine results in stable electrical power generation for a span of 

1.2MW to 4.2MW. 
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