
Zirra P.B., G.M. Wajiga 109

CRYPTOGRAPHY FOR COMPUTER SECURITY APPLICATION

Zirra P.B.1, and G.M. Wajiga2

1Department of Mathematical Sciences, Adamawa State University, Mubi
2Department of Mathematical Sciences, Federal University of Technology, Yola

Abstract
This paper presents a cryptography application that is able to work with any type of file; for
example: image files, data files, documentation files…etc. The method of encryption is simple
enough yet powerful enough to fit the needs of students and staff in a small institution. The
application uses simple key generation method of random number generation and combination.
The final encryption is a binary one performed through rotation of bits and XOR operation
applied on each block of data in any file using a symmetric decimal key. The key generation
and encryption are all done by the system itself after clicking the encryption button with
transparency to the user. The same encryption key is also used to decrypt the encrypted binary
file. Experimental results were given to demonstrate the effectiveness of the application.

Keywords: encryption, decryption, key, rotation, xor.

Introduction
Cryptography helps protect data from

being viewed or modified and helps provide
a secure means of communication over
otherwise insecure channels (Freeman, Neely,
& Megalo, 1998; Diaa, Hatem, & Mohiy,
2010). For example, data can be encrypted
using a cryptographic algorithm, transmitted
in an encrypted state, and later decrypted by
the intended party (Wikipedia, 2006). If a
third party intercepts the encrypted data, it
will be difficult to decipher.

The unencrypted data is referred to as
the plaintext (Kessler, 2010) and the
encrypted data as the ciphertext (Ritter,
2007), which is representation of the original
data in a difference form (Freeman, Neely, &
Megalo, 1998).

Key-based algorithms use an encryption
key to encrypt the message (Kahate, 2008;
Ibrahim, 2009). There are two general
categories for key-based Encryption:
Symmetric encryption which uses a single key
to encrypt and decrypt the message and
asymmetric encryption which uses two
different keys – a public key to encrypt the
message, and a private key to decrypt it
(Agnew, Mullin, Onyszchuk & Vqanstone,
1995; Kak, 2009). Currently, there are
several types of key based encryption

algorithms such as: DES, RSA, PGP, Elliptic
curve, and others but all of these algorithms
depend on high mathematical manipulations
(Beth & Gollmann, 1989; IBM, 1994).

One simple and good way to encrypt
data is through rotation of bits or sometimes
called bit shifting. But, rotation of bits is more
advanced than simple bit shifting. In rotation
of bits operation, the bits are moved, or
shifted, to the left or to the right. The different
kinds of shifts typically differ in what they do
with the bits (Wikipedia, 2006). Another way
is to perform logical operation on the bits of
the file such as XOR operation. The idea
behind XOR Encryption is that it is impossible
to reverse the operation without knowing the
initial value of one of the two arguments
(Andy, 1998).

Preliminaries
There are several kinds of Encryption

software in the market categorized by their
functions and target groups. For example,
some are single Encryption applications for
files and database security; some are for
messenger security or email Encryption
applications that hide the actual text in the
medium between the sender and the receiver
(Baraka, El-Manawy and Attiya, 1998). One
of the first types of Encryption was made by

Cryptography for Computer Security Application 110

Julius Caesar. Microsoft (2000) in his system,
Caesar wrote B instead of A and C instead of
B – so to a sentence “ABC” will be written in
“BCD” (Wikipedia, 2006).

dsCrypt is AES/Rijndael file Encryption
software with simple, multi-file, drag-and-
drop operations. It features optimal
implementation, performance and safety
measures. dsCrypt uses an advanced
Encryption algorithm and offers unique
options for enhanced security (Dariusz,
2006).

NeoCrypt is a free, open-source File
Protection Utility for Windows. It helps to
protect sensitive information easily by
encrypting it with password or key. It yields
fast, reliable and unbreakable Encryption and
supports many popular Encryption
algorithms. All types of files can be encrypted
like Audio, Video, Documents and
Executables programs.

Neek protect is a software in the market
right now with the ability to make Encryption
on any files in the window platform, a key is
set when one try to encrypt a files and the key
will be used again when someone else trying
to open the files been decrypted through
decryption on the certain files (Vivek, 2006).
Neek Protect is a good software operated
under Microsoft windows because of the
flexibility of this program’s advanced features
integration such as double click, file icons,
.npt file extension etc.

This paper reports on a similar
encryption technique that uses binary rotation
of bits with XOR logical operation using a
custom made encryption key that operates on
any type of a file.

Methodology
The research included six (6) professional

files. These were analyzed and then
evaluated for their efficiency.

Key Generation
A symmetric encryption key is used for

this application, which means the same key is
shared for both encryption and decryption. A
copy of the generated key is saved in a file

named .ekf during the encryption process and
the same key is used as the decryption key to
retrieve the encrypted file. The technique of
generating the key uses two methods:
random number generation and combination
as follows.
a) A long number with only digit values

called x is generated.
b) Another long number with character

values called y is generated. The size of y
is twice the size of x.

c) An insertion operation is performed such
that each digit of x is inserted after two
characters of y. The result of the insertion
is called z.

d) Another only digit number called d is
randomly generated. z is combined with
q by placing alternately one character or
digit from z after a character or a digit
from q. The result of the combination is a
relatively strong key.

e) An odd and even partitioning is
performed on the key. The position of
each character in the key decides it to be
an even or an odd character. For
example, the character at position 0 is an
even one while the character at position
1 is an odd character. Similarly, position
2 is an even position while position 3 is
odd one. The even part of the key is
combined together and the odd part of
the key is combined together.

f) The two parts of the key are joined as an
even part followed by an odd part to
produce one final encryption key. Since
the final key is a key that consists of all
characters, another key with only ASCII
values of each character is obtained. The
result is a very long decimal key. Figure 1
shows the complete key generation
process.

Encryption Rules
For the encryption method, a single digit

in the decimal ASCII representation will
decide which encryption method is to be
applied to the single a binary block in a file.

i. 0 in the key means a rotation of bit to the
left is performed and the next integer to 0

Adamawa State University Journal of Scientific Research 111

in the ASCII code decides how many bits
the block will be moved to the left.

ii. 1 in the key means a rotation of bit to the
right is performed and the next integer to
1 in the ASCII code decides how many
bits the block will be moved to the right.

iii. 2 means the block will be passed to an
XOR encryption to be performed with a
binary block from the file.

Else, all other numbers in the key like
3,4,5,6,7,8,9 are ignored.

File Types
There are no limitations of the type of files

accepted for encryption in this application,
which means any type of a file such as data
files, audio files, video files or image files can
be encrypted by the application. This is
because all the files are encrypted at the
binary level. There is also no limitation of the
size of the file that can be encrypted using this
application, which provides flexibility to the
user. The encrypted file can only be opened
and viewed after it has been decrypted to its
original file using the symmetric encryption
key. The above rules are summarized in the
encryption chart shown in figure 2.

Random Generation of
x(10 integers)
y(20 integers)
z(20 integers)

Key1← x + y
(1 digit after 2 characters)

Key2← Key1 + z
(1 digit after 2 characters)

Odd/even partitioning

Conversion to binary ASCII

Final key

Begin

End

FIGURE 1: Key Generation Flowchart

Cryptography for Computer Security Application 112

Ye

Ye

YeYeYe

N

N

NN

Start

Read Key, N

Key = 0 Key = 2Key = 1

Read next block
number, N = N+1

Rotation of bits to
left by the value of

N = N+2

Read next block
number, N = N+1

Rotation of bits to
right by the value of

N = N+2

Read the next 2
ASCII code, N+1

Convert to binary
form

Read the next 8 bits
from the file, N+1

to N+8

XOR comparison

End of
key?

End of
file?

Recycling
key

Stop

Figure 2: Encryption Flowchart

Adamawa State University Journal of Scientific Research 113

Results
The interface of the application is simple

enough to be used by any user. Figure 3
shows the interface with the encryption and a
decryption buttons. The encryption is
performed simply by choosing any file while

decryption is executed by choosing an
encrypted file with an appropriate key. Figure
4 and 5 shows a successful encryption and
decryption, respectively.

Figure 3: Shows the Encryption/Decryption interface.

Figure 4: Shows a successful encryption and the encryption progress bar.

Cryptography for Computer Security Application 114

Figure 5: Successful decryption and the decryption progress bar.

Application Testing & Performance Checking
Application testing is applied to the entire

application with multiple application features
to make sure the application can encrypt all
types and all sizes of files. Successful testing
means the application is user-friendly and
comfortable to be used by all range of target
users. For performance checking, the
application was tested with different types
and sizes of files and the performance of the
application was rated by computing the time
required for encryption of the files. Also, the
reliability of the application was examined by
the success rate of encryption. A successful
execution means an encrypted file is not
visible by others; also successful execution

means a decrypted file was obtained using a
key and an encrypted file. Table 1 shows the
testing of different types and sizes of files.
Figure 6 shows the encryption time for six
different types of files that are of the same size
of 5 Mb. It can be seen that the encryption
time is similar for all the files especially when
the file size is small. The small size of files is a
typical example of the use of this application
as it is mainly targeted for small university
campus. Most of the documents used in this
environment are of text type with some
figures inside the text; therefore, the sizes of
the files may not go over few mega bytes.

Table 1: Testing of the Application with Different Types and Sized Files.

File Types File Size(Mb) Encryption Time (S) Success Rate
Document 1/ 3/ 5 9/27/45 100%

Image 1/ 3/ 5 10/26/44 100%
Audio/ Video 1/ 3/ 5 18/28/45 100%

Zipped 1/ 3/ 5 10/25/44 100%
Exe. 1/ 3/ 5 12/27/48 100%

Adamawa State University Journal of Scientific Research 115

Figure 6: Graphical view of the encryption time for different types of files.

Conclusion and Future Work

A new simple tool has been created, which is
targeted for use inside a small institution such
as a small university for lecturers’ daily use of
sending exam files and sensitive material such
that the material can be encrypted and the
file is sent in one e-mail while the encryption
key is sent in another e-mail or via any secure
communication channel. The encryption
application developed and described in this
paper might not be comparable to well-
known encryption algorithms but its simplicity
and availability proves that tools can be

developed that fit the needs of an institution
without resorting to purchasing expensive
software from the market. For future
enhancement to this application public key
encryption can be applied where two keys
can be generated: one to encrypt a file using
the public key and another private key to
decrypt it. Also, other more advanced
encryption operations can be included to
enhance the security of the application so that
it can be used to encrypt more sensitive
administrative material in an institution.

References
Agnew, G. B., Mullin, R. C., Onyszchuk, I.

M., and Vqanstone, S. A. (1995). An
implementation for a fast public-key
cryptosystems. Journal of Cryptology,
3(2), 63-79.

Andy, W. (1998). Tips and Tricks: XOR
Encryption Available at: http:// www.
andyw. com /director /xor. Asp.

Baraka, H., El-Manawy, H. A., and Attiya, A.
(1998). An Integrated Model for Internet
Security Using Prevention and Detection
Techniques. IEEE Journal of Computer
and Communication, 99, 25-33.

Beth, T. and Gollmann, D. (1989). Algorithm
Engineering for Public Key Algorithms.

IEEE Journal on Selected Areas in
Communications; 7(4), 458-466.

Dariusz, S. (2006). Free Software copyright
1997 -2006. Available at: Error!
Hyperlink.

Diaa, S. A. M., Hatem, M. A. K., & Mohiy,
M. H. (2010). Evaluating the
performance of symmetric encryption
algorithms. International journal of
network security, 10(3), 213-219.

Freeman, J., Neely, R., and Megalo, L.
(1998). Developing secure systems:
issues and solutions. IEEE Journal of
Computer and Communication, 89, 36-
45.

Cryptography for Computer Security Application 116

Ibrahim, M. H. (2009). Receiver-deniable
public-key encryption, International
journal of network security, 8(2),159-
165.

IBM (1994). The Data Encryption Standard
(DES) and its strength against attacks.
IBM Journal of Research and
Development, 38, 243-250.

Kahate, A. (2008). Cryptography and
network security (2nd ed.). New Delhi:
Tata McGraw Hill.

Kak, A. (2009). Classical encryption
techniques. Lecture notes on “computer
and network security” Purdue
University.

Kessler, G.C. (2010). Handbook on local
area networks: An overview of

cryptography. United Kingdom:
Auerbach. Retrieved January 3, 2010
from
http://www.garykessler.net/library/crypto.
html.

Ritter, T. (2007). Crypto glossary and
dictionary of technical cryptography.
Retrieved August 17, 2009 from
http://www.ciphersbyritter.com/GLOSSA
RY.HTM

Vivek, T. (2006). NeekProtect. Available at:
http://neekprotect.sourceforge.net.

Wikipedia (2006). Encryption. Available at:
http://en.wikipedia.org/wiki/Encryption,
on 13 December 2006.

