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Abstract 

We consider the reformulation of implicit one-step Legendre polynomial hybrid 

block method in form of implicit runge-kutta collocation methods for the solutions 

of first-order ordinary differential equations. The methods of uniform accuracy 

everywhere in the interval of integration of order five (5) were constructed.  Some 

numerical experiments are considered in order to test the method when applied to a 

variety of initial value problems. 
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INTRODUCTION 

Numerical methods are 

valuable tools, for finding solutions 

of ordinary differential equations, 

since finding an analytic solution is 

often very difficult or impossible. 

The first numerical method for 

ordinary differential equations is the 

famous Euler method introduced in 

1760’s and republished in his 

collected works in 1913. 

In this paper, we consider the 

reformulation of implicit one-step 

Legendre polynomial block hybrid –

method into implicit Runge-kutta 

collocation methods, due to their 

excellent stability and stiffly accurate 

characteristic properties for the direct 

integration of initial value problem, 

possibly stiff, of the form: 

 

).(,)(,))(,()( bxxyxyxyxfxy 
     (1) 

 

  

Here the unknown function y is a 

mapping
Nbx ],[  , the right-

hand side function f is 

NNbx ],[  and the initial 

vector )( xy is given in
N . This 

method evaluates the driving function 

of (1) once in each step and uses an 

approximated solution from the 

previous step to up-date a solution. 

Early extensions of the method is the 

well-known and the most commonly 

used Runge-kutta method 
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(Multistage), because the Runge-

kutta uses a result given at the one or 

more off-step points (Chollom and 

Jackiewicz, 2003; Euler, 1913). 

Different methods have been 

proposed for the solution of (1) 

ranging from predictor-corrector 

methods to hybrid methods. One-step 

methods have always been regarded 

as expensive because of their 

multistage structure (Burrage and 

Butcher 2001). The implementation 

costs for implicit Runge-kutta 

methods present obstacle to finding 

cheap implementation because of the 

structure of the coefficient matrix A 

in Butcher’s array, which has a pair 

of complex conjugate eigen-values. 

For both explicit and implicit Runge-

kutta methods it is very difficult to 

estimate errors for variable order p
 

(Burrage and Butcher 2001). 

 

Hybrid methods have 

advantage of incorporating function 

evaluation at off-step points which 

affords the opportunity of 

circumventing the Dahlquist  zero 

stability barrier and it is actually 

possible to obtain convergent k-step 

methods with order 2k+1 up to k=9, 

(Butcher, 2003). The method is also 

useful in reducing the step number of 

a method and still remains zero stable 

(Adesanya et al. 2013). 

 

MATERIALS AND METHODS 

Derivation of the Implicit Runge-

Kutta Collocation Method 

We consider a k-step collocation 

method (Onumanyi, et al. 1994) 

which was a generalization of  the 

form presented by ( Lei,  and Nosett, 

1989): 
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Where t denote the number of 

interpolation points 

1,,2,1,0,  tjx j   and 

s denotes the distinct collocation 

points 1,,2,1,0],,[  sjbxx j  , 

belonging to the given interval. The 

step size h can be a variable, it is 

assumed in this paper as a constant 

for simplicity, with the given 

mesh

Nnnhxxx nn ,,2,1,0,:   , 

where
h

ab
Nxxh nn

)(
,1


  , 

and a set of equally spaced points on 

the integration interval given 

by bxxx n  11  . Also we 

assumed that (1) has a unique 

solution and )()( xhandx jj  in 

(2) are to be represented by the 

polynomials: 
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With constant coefficients 
1, ij and 

1, ij  to be determined. Expanding 

)(xy in (2) using Taylor series 

method of expansion about x and 

collect powers in h to obtain the 

methods. 

Inserting (3) into (2) we have: 
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Written as   
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Such that (4) reduces to 
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which can now be expressed in the form 
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Thus, we can express equation (5) explicitly as follows: 
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and 
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are matrices of dimensions 

(t+s)x(t+s). We call D the multistep 

collocation and interpolation matrix 

which has a very simple structure. It 

is similar to vandermonde matrix, 

consisting of distinct elements, non-

singular, and of dimension 

(s+t)x(s+t). This matrix affects the 

efficiency, accuracy and stability 

properties of (4) the choice 
1 DC leads to the determination of 

the constant coefficients 
1, ij  

and
1, ij . It was shown in Jain et al., 

(2007), Butcher, (2008) and Chollom 

and Donald, (2009)   that the method 

(2) is convergent with 

order 1 stp . We now examine 

in more detail how the constant 

coefficients 
1, ij and 

1, ij  of 

equation (2) are obtained for the 

reformulation of implicit one-step 

Legendre polynomial block hybrid 

method into implicit Runge-kutta 

methods. 

Therefore, by careful selection of the 

interpolation and collocation points 

inside the interval ],[ bx , leads to a 

single continuous finite difference 

method whose members are of 

uniform accuracies (Butcher,  2003; 

Butcher, 2005). The matrix D of 

equation (8) takes the form: 
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Which are valued in the 

interval ],[ bx . Inverting the matrix 

D in equation (9) once, using 

computer algebra, for example, 

Maple or MatLab software package, 

we obtain the continuous scheme as
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We evaluate )(xy in (11) at the following point vnwnunn xandxxxx  ,,1 , we 

obtain the following 4-block hybrid scheme with uniformly accurate order five: 
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We converted the implicit one-step Legendre polynomial block hybrid scheme 

above to implicit Runge-kutta collocation method, written as: 
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The stage values at the nth step are computed as: 
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With the stage derivatives as follows: 
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The implicit Runge-kutta collocation method has order P=5, the Butcher tableau 

that defines the method as in Chollom and Jackiewicz, (2003) and Yakubu (2003), 

takes the form: 
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Analysis of Basic Properties of the 

Method 

 The convergence and 

stability properties of the methods are 

discussed by reformulation of the 

block method as general linear 

methods (Butcher, 2008; Burrage and 

Butcher, 2001). Hence, we use the 

notation introduced by Butcher, 

(2008), where a general linear 

method is represented by a 

partitioned    rsrs   matrix. 
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where 
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where r denotes quantities as output 

from each step and input to the next 

step and s denotes stage values used 

in the computation of the 

step sYYY ,,, 21  . The coefficients of 

these matrices, A, U, B and V 

indicate the relationship between the 

various numerical quantities that arise 

in the computation of stability 

regions. The elements of the matrices 

A, U, B and V are substituted into the 

stability matrix. Applying (15) to the 

test equation 
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 leads to 

the recurrent equation: 
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  .11,:   zx  

Computing the stability functions 

gives the stability polynomial of the 

method as: 
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          (16) 

 

The stability polynomial (16) is 

plotted to produce the required graph 

of the absolute stability region of the 

method as displayed in the figure 1. 
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Figure.1: Stability region of the implicit one-step Runge-kutta collocation method. 

 

Numerical Experiments 

The new method shall be tested on 

some set of stiff differential equations 

and compared the obtained results 

side by side in tables. The numerical 

results were obtained using 

MATLAB software. 

 

Problem 1 

A certain radioactive substance is 

known to decay at the rate 

proportional to the amount present. A 

block of this substance having a mass 

of 100g originally is observed. After 

40hours, its mass reduced to 90g. 

Test for the consistency of the 

method on this problem for ].1,0[t  

This stiff problem is modeled by the 

differential equation: 

 

]1,0[,100)0(,0026.0,  tNN
dt

dN
         (17 ) 

 

Where N represents the mass of the 

substance at any time t  and  is a 

constant which specifies the rate at 

which this particular substance 

decays. The theoretical solution to 

(17 ) is given by; 
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tetN 0026.0100)(   (18 ) 

 

This problem was also solved by 

Sunday  (2011), where they proposed 

on Adomian decomposition method 

for numerical solution of ODEs 

arising from the natural laws of 

growth and decay. Result to this 

problem is shown in table 1. 

 

Table 1: comparison of the exact solution with the approximation/computed 

solution of problem (1) 

 

t Exact result Computed result Absolute Errors Time/s 

0.10 99.9740033797 99.9740033797 0.000E+00 0.0191 

0.20 99.9480135177 99.9480135177 0.000E+00 0.0232 

0.30 99.9220304121 99.9220304121 0.000E+00 0.0272 

0.40 99.8960540613 99.8960540613 0.000E+00 0.0314 

0.50 99.8700844634 99.8700844634 0.000E+00 0.0349 

0.60 99.8441216168 99.8441216168 0.000E+00 0.0389 

0.70 99.8181655196 99.8181655196 0.000E+00 0.0435 

0.80 99.7922161701 99.7922161701 0.000E+00 0.0475 

0.90 99.7662735666 99.7662735666 0.000E+00 0.0521 

1.00 99.7403377073 99.7403377073 0.000E+00 0.0562 

 

Problem 2    
Consider the stiff initial value problem  

1,5 0  yyy
            (19) 

With the exact solution 
xexy 5)(  .          (20) 

 

Table 2: Comparison of exact solution with approximate solution of problem (2), 

h=0.01 

 

x Exact result Computed result Absolute 

Errors 

Time/s 

0.00 1.000000000 1.000000000 0.000E+00 0.0822 

0.01 1.051271096 1.051271096 0.000E+00 0.1090 

0.02 1.105170918 1.105170917 1.000E-09 0.1098 

0.03 1.161834243 1.161834244 1.000E-09 0.1106 

0.04 1.221402758 1.221402758 0.000E+00 0.1124 

0.05 1.284025417 1.284025418 1.000E-09 0.1132 

0.06 1.349858808 1.349858808 0.000E+00 0.1141 

0.07 1.419067549 1.419067551 2.000E-09 0.1151 

0.08 1.491824698 1.491824700 2.000E-09 0.1162 

0.09 1.568312185 1.568312188 3.000E-09 0.1171 

0.10 1.648721271 1.648721273 2.000E-09 0.1183 
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CONCLUSION  

 In this paper we have studied 

the class of one-step implicit Runge-

kutta collocation methods suitable for 

the approximate numerical 

integration of first order ordinary 

differential equations. We obtained 

uniformly accurate order five method 

at the step points as well as at some 

selected off-step points. In this way 

acceptable stability for stiff problems 

is obtained as for the Runge-kutta 

methods. All the derived methods 

obtained through this approach 

performed very well in stiff and 

initial value problem of first order 

ordinary differential equations.  
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