REFORMULATION OF IMPLICIT ONE-STEP LEGENDRE POLYNOMIAL HYBRID BLOCK METHOD IN FORM OF IMPLICIT RUNGE-KUTTA COLLOCATION METHODS FOR THE SOLUTIONS OF FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS

Donald, J. Z $^{1^{*}}$, Skwame, Y. ${ }^{1}$ and Dominic, R. ${ }^{2}$
${ }^{1}$ Department of Mathematics, Adamawa State University, Mubi, Adamawa State, Nigeria.
${ }^{2}$ Department of Mathematics, Federal University of Technology, Wukari, Taraba State, Nigeria.
Contact: donaldjohnz@yahoo.com $+2348052629142$

Abstract

We consider the reformulation of implicit one-step Legendre polynomial hybrid block method in form of implicit runge-kutta collocation methods for the solutions of first-order ordinary differential equations. The methods of uniform accuracy everywhere in the interval of integration of order five (5) were constructed. Some numerical experiments are considered in order to test the method when applied to a variety of initial value problems.

KEYWORDS: Hybrid, Implicit, Legendre Polynomial, One-step, Collocation.

INTRODUCTION

Numerical methods are valuable tools, for finding solutions of ordinary differential equations, since finding an analytic solution is often very difficult or impossible. The first numerical method for ordinary differential equations is the famous Euler method introduced in 1760's and republished in his collected works in 1913.

In this paper, we consider the reformulation of implicit one-step Legendre polynomial block hybrid method into implicit Runge-kutta collocation methods, due to their excellent stability and stiffly accurate characteristic properties for the direct integration of initial value problem, possibly stiff, of the form:
$y^{\prime}(x)=f(x, y(x)), y\left(x_{\mathrm{o}}\right)=y_{\mathrm{o}}, \quad\left(x_{\mathrm{o}} \leq x \leq b\right)$.

Here the unknown function y is a mapping $\left[x_{0}, b\right] \rightarrow \mathfrak{R}^{N}$, the righthand side function f is $\left[x_{\circ}, b\right] \times \mathfrak{R}^{N} \rightarrow \mathfrak{R}^{N}$ and the initial vector $y\left(x_{\circ}\right)$ is given in \mathfrak{R}^{N}. This
method evaluates the driving function of (1) once in each step and uses an approximated solution from the previous step to up-date a solution. Early extensions of the method is the well-known and the most commonly used Runge-kutta method
(Multistage), because the Rungekutta uses a result given at the one or more off-step points (Chollom and Jackiewicz, 2003; Euler, 1913).

Different methods have been proposed for the solution of (1) ranging from predictor-corrector methods to hybrid methods. One-step methods have always been regarded as expensive because of their multistage structure (Burrage and Butcher 2001). The implementation costs for implicit Runge-kutta methods present obstacle to finding cheap implementation because of the structure of the coefficient matrix A in Butcher's array, which has a pair of complex conjugate eigen-values. For both explicit and implicit Rungekutta methods it is very difficult to estimate errors for variable order p
(Burrage and Butcher 2001).
$y(x)=\sum_{j=0}^{t-1} \alpha_{j}(x) y_{n+j}+h \sum_{j=0}^{s-1} \beta_{j}(x) f_{n+j}$
Where t denote the number of interpolation points $x_{j}, j=0,1,2, \cdots, t-1 \quad$ and s denotes the distinct collocation points $\bar{x}_{j} \in\left[x_{\circ}, b\right], j=0,1,2, \cdots, s-1$, belonging to the given interval. The step size h can be a variable, it is assumed in this paper as a constant for simplicity, with the given mesh
$x_{n}: x_{n}=x_{0}+n h, \quad n=0,1,2, \cdots, N$,
$\alpha_{j}(x)=\sum_{i=0}^{t+s-1} \alpha_{j, i+1} x^{i}, h \beta_{j}(x)=\sum_{i=0}^{t+s-1} h \beta_{j, i+1} x^{i}$,

TETFUND/UNIMUBI/ARJ/3

With constant coefficients $\alpha_{j, i+1}$ and $\beta_{j, i+1}$ to be determined. Expanding $y(x)$ in (2) using Taylor series method of expansion about x and
collect powers in h to obtain the methods.
Inserting (3) into (2) we have:

$$
\begin{align*}
y(x) & =\sum_{j=0}^{t-1} \sum_{i=0}^{t+s-1} \alpha_{j, i+1} x^{i} y_{n+j}+\sum_{j=0}^{s-1} \sum_{i=0}^{t+s-1} h \beta_{j, i+1} x^{i} f_{n+j} \\
& =\sum_{i=0}^{t+s-1}\left\{\sum_{j=0}^{t-1} \alpha_{j, i+1} y_{n+j}+\sum_{j=0}^{s-1} h \beta_{j, i+1} f_{n+j}\right\} x^{i} \tag{4}
\end{align*}
$$

Written as

$$
a_{i}=\sum_{j=0}^{t-1} \alpha_{j, i+1} y_{n+j}+\sum_{j=0}^{s-1} h \beta_{j, i+1} f_{n+j}
$$

Such that (4) reduces to

$$
\begin{equation*}
y(x)=\sum_{i=0}^{t+s-1} a_{i} x^{i} \tag{5}
\end{equation*}
$$

which can now be expressed in the form

$$
y(x)=\left\{\sum_{j=0}^{t-1} \alpha_{j, t+s-1} y_{n+j}+\sum_{j=0}^{s-1} h \beta_{j, t+s-1} f_{n+j}\right\}\left(1, x, x^{2}, \cdots, x^{t+s-1}\right)^{T} .
$$

Thus, we can express equation (5) explicitly as follows:

$$
\begin{equation*}
y(x)=\left(y_{n}, \cdots, y_{n+t-1}, f_{n}, \cdots, f_{n+s-1}\right) C^{T}\left(1, x, x^{2}, \cdots, x^{t+s-1}\right)^{T} \tag{6}
\end{equation*}
$$

where

$$
C=\left(\begin{array}{cccccc}
c_{1,0} & \cdots & c_{1, t} & c_{1, t+1} & \cdots & c_{1, t+s} \tag{7}\\
c_{2,0} & \cdots & c_{2, t} & c_{2, t+1} & \cdots & c_{2, t+s} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
c_{t, 1} & \cdots & c_{t, t} & c_{t, t+1} & \cdots & c_{t, t+s} \\
c_{t+1,1} & \cdots & c_{t+1, t} & c_{t+1, t+1} & \cdots & c_{t+1, t+s} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
c_{t+s, 1} & \cdots & c_{t+s, t} & c_{t+s, t+1} & \cdots & c_{t+s, t+s}
\end{array}\right)=\mathrm{D}^{-1}
$$

and

$$
D=\left(\begin{array}{lllllll}
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{i} & \cdots & x_{n}^{t+s-1} \tag{8}\\
1 & x_{n+1} & x_{n+1}^{2} & \cdots & x^{t}{ }_{n+1} & \cdots & x_{n+1}^{t+s-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
1 & x_{n+t-1} & x_{n+t-1}^{2} & \cdots & x_{n+t-1}^{t} & \cdots & x_{n+t-1}^{t+s-1} \\
0 & 1 & 2 \bar{x}_{0} & \cdots & t x_{i}^{(i-1)} & \cdots & (t+s-1) \bar{x}_{i s}^{t+s-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & 1 & & 2 \bar{x}_{s} & \cdots & t \bar{x}_{s}^{(t-1)} & \cdots \\
\hline
\end{array}\right)
$$

are matrices of dimensions $(t+s) x(t+s)$. We call D the multistep collocation and interpolation matrix which has a very simple structure. It is similar to vandermonde matrix, consisting of distinct elements, nonsingular, and of dimension $(\mathrm{s}+\mathrm{t}) \mathrm{x}(\mathrm{s}+\mathrm{t})$. This matrix affects the efficiency, accuracy and stability properties of (4) the choice $C=D^{-1}$ leads to the determination of the constant coefficients $\alpha_{j, i+1}$ and $\beta_{j, i+1}$. It was shown in Jain et al., (2007), Butcher, (2008) and Chollom and Donald, (2009) that the method (2) is convergent with
order $p=t+s-1$. We now examine in more detail how the constant coefficients $\quad \alpha_{j, i+1}$ and $\quad \beta_{j, i+1} \quad$ of equation (2) are obtained for the reformulation of implicit one-step Legendre polynomial block hybrid method into implicit Runge-kutta methods.
Therefore, by careful selection of the interpolation and collocation points inside the interval $\left[x_{0}, b\right]$, leads to a single continuous finite difference method whose members are of uniform accuracies (Butcher, 2003; Butcher, 2005). The matrix D of equation (8) takes the form:

$$
D=\left(\begin{array}{llllll}
7 & 11 x_{n} & -18 x_{n}^{2} & -50 x_{n}^{3} & 35 x_{n}^{4} & 63 x_{n}^{5} \tag{9}\\
0 & 11 & -36 x_{n}^{2} & -150 x_{n}^{3} & 140 x_{n}^{4} & 315 x_{n}^{5} \\
0 & 11 & -36 x_{n+u}^{2}-150 x_{n+u}^{3} & 140 x_{n+u}^{4} & 315 x_{n+u}^{5} \\
0 & 11 & -36 x_{n+w}^{2}-150 x_{n+w}^{3} & 140 x_{n+w}^{4} & 315 x_{n+w}^{5} \\
0 & 11 & -36 x_{n+v}^{2}-150 x_{n+v}^{3} & 140 x_{n+v}^{4} & 315 x_{n+v}^{5} \\
0 & 11 & -36 x_{n+1}^{2}-150 x_{n+1}^{3} & 140 x_{n+1}^{4} & 315 x_{n+1}^{5}
\end{array}\right)
$$

Where u, w and v are zeros of $l_{m}(x)=0$, Legendre polynomials of degree $\mathrm{m}=3$ (Villadsen and Michelsen, 1987).

TETFUND/UNIMUBI/ARJ/3
$\bar{x}_{o}=x_{n+u}, u=\frac{1}{4}, \bar{x}_{1}=x_{n+w}, w=\frac{1}{2}$ and $\bar{x}_{2}=x_{n+v}, v=\frac{3}{4}$
Which are valued in the computer algebra, for example, interval $\left[x_{\circ}, b\right]$. Inverting the matrix D in equation (9) once, using Maple or MatLab software package, we obtain the continuous scheme as

$$
\begin{equation*}
y(x)=\alpha_{0}(x) y_{n}+\left[\beta_{0}(x) f_{n}+\beta_{u}(x) f_{n+u}+\beta_{w}(x) f_{n+w}+\beta_{v}(x) f_{n+v}+\beta_{1}(x) f_{n+1}\right] \tag{11}
\end{equation*}
$$

Where
$\alpha_{0}(x)=1$
$\beta_{0}(x)=-\frac{1}{90}\left[192 x^{5}-600 x^{4}+700 x^{3}-375 x^{2}+90 x\right]$
$\beta_{u}(x)=\frac{1}{45}\left[-384 x^{5}+1080 x^{4}-1040 x^{3}+360 x^{2}\right]$
$\beta_{w}(x)=-\frac{1}{15}\left[192 x^{5}-480 x^{4}+380 x^{3}-90 x^{2}\right]$
$\beta_{v}(x)=\frac{1}{45}\left[-384 x^{5}+840 x^{4}-560 x^{3}+120 x^{2}\right]$
$\beta_{1}(x)=-\frac{1}{90}\left[192 x^{5}-360 x^{4}+220 x^{3}-45 x^{2}\right]$

We evaluate $y(x)$ in (11) at the following point $x=x_{n+1}, x_{n+u}, x_{n+w}$ and x_{n+v}, we obtain the following 4-block hybrid scheme with uniformly accurate order five:
$y_{n+1}=y_{n}+\frac{h}{90}\left[7 f_{n}+32 f_{n+u}+12 f_{n+w}+32 f_{n+v}+7 f_{n+1}\right]$
order $p=6, \quad C_{7}=-\frac{1}{1935360}$
$y_{n+u}=y_{n}+\frac{h}{2880}\left[251 f_{n}+646 f_{n+u}-264 f_{n+w}+106 f_{n+v}-19 f_{n+1}\right]$
order $p=5, \quad C_{6}=\frac{3}{655360}$
$y_{n+w}=y_{n}+\frac{h}{360}\left[29 f_{n}+124 f_{n+u}+24 f_{n+w}+4 f_{n+v}-f_{n+1}\right]$
order $p=5, \quad C_{6}=\frac{1}{368640}$

$$
\begin{align*}
& y_{n+v}=y_{n}+\frac{h}{320}\left[27 f_{n}+102 f_{n+u}+72 f_{n+w}+42 f_{n+v}-3 f_{n+1}\right] \tag{12d}\\
& \text { order } p=5, \quad C_{6}=\frac{3}{655360}
\end{align*}
$$

We converted the implicit one-step Legendre polynomial block hybrid scheme above to implicit Runge-kutta collocation method, written as:

$$
\begin{equation*}
y_{n}=y_{n-1}+h\left(\frac{7}{90}\right) F_{1}+h\left(\frac{16}{45}\right) F_{2}+h\left(\frac{2}{15}\right) F_{3}+h\left(\frac{16}{45}\right) F_{4}+h\left(\frac{7}{90}\right) F_{5} \tag{13}
\end{equation*}
$$

The stage values at the nth step are computed as:

$$
\begin{aligned}
& Y_{1}=y_{n-1} \\
& Y_{2}=y_{n-1}+h\left(\frac{251}{2880}\right) F_{1}+h\left(\frac{323}{1440}\right) F_{2}+h\left(\frac{11}{120}\right) F_{3}+h\left(\frac{53}{1440}\right) F_{4}-h\left(\frac{19}{2880}\right) F_{5} \\
& Y_{3}=y_{n-1}+h\left(\frac{29}{360}\right) F_{1}+h\left(\frac{31}{90}\right) F_{2}+h\left(\frac{1}{15}\right) F_{3}+h\left(\frac{1}{90}\right) F_{4}-h\left(\frac{1}{360}\right) F_{5} \\
& Y_{4}=y_{n-1}+h\left(\frac{27}{320}\right) F_{1}+h\left(\frac{51}{160}\right) F_{2}+h\left(\frac{9}{40}\right) F_{3}+h\left(\frac{21}{160}\right) F_{4}+h\left(\frac{3}{320}\right) F_{5}
\end{aligned}
$$

With the stage derivatives as follows:

$$
\begin{aligned}
& F_{1}=f\left(x_{n-1}+h(0), Y_{1}\right) \\
& F_{2}=f\left(x_{n-1}+h\left(\frac{1}{4}\right), Y_{2}\right) \\
& F_{3}=f\left(x_{n-1}+h\left(\frac{1}{2}\right), Y_{3}\right) \\
& F_{4}=f\left(x_{n-1}+h\left(\frac{3}{4}\right), Y_{4}\right) \\
& F_{5}=f\left(x_{n-1}+h(1), Y_{5}\right)
\end{aligned}
$$

TETFUND/UNIMUBI/ARJ/3
The implicit Runge-kutta collocation method has order $\mathrm{P}=5$, the Butcher tableau that defines the method as in Chollom and Jackiewicz, (2003) and Yakubu (2003), takes the form:

$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\frac{1}{4}$	$\frac{251}{2880}$	$\frac{323}{1440}$	$\frac{11}{120}$	$\frac{53}{1440}$	$-\frac{19}{2880}$
$\frac{1}{2}$	$\frac{29}{360}$	$\frac{31}{90}$	$\frac{1}{15}$	$\frac{1}{90}$	$-\frac{1}{360}$
$\frac{3}{4}$	$\frac{27}{320}$	$\frac{51}{160}$	$\frac{9}{40}$	$\frac{21}{160}$	$-\frac{3}{320}$
$\mathbf{1}$	$\frac{7}{90}$	$\frac{16}{45}$	$\frac{2}{15}$	$\frac{16}{45}$	$\frac{7}{90}$
	$\frac{7}{90}$	$\frac{16}{45}$	$\frac{2}{15}$	$\frac{16}{45}$	$\frac{7}{90}$

Analysis of Basic Properties of the Method

The convergence and stability properties of the methods are discussed by reformulation of the block method as general linear methods (Butcher, 2008; Burrage and

$$
M=\left[\begin{array}{ll}
A & U \tag{14}\\
B & V
\end{array}\right]
$$

Hence it takes the form

$$
\left[\begin{array}{c}
Y_{1}^{[n]} \tag{15}\\
Y_{2}^{[n]} \\
\vdots \\
Y_{s}^{[n]} \\
---- \\
y_{1}^{[n]} \\
\vdots \\
y_{s}^{[n]}
\end{array}\right]=\left[\begin{array}{cc}
A & U \\
B & V
\end{array}\right]\left[\begin{array}{c}
h f\left(Y_{1}\right)^{[n]} \\
h f\left(Y_{2}\right)^{[n]} \\
\vdots \\
h f\left(Y_{s}\right)^{[n]} \\
---- \\
y_{1}^{[n-1]} \\
\vdots \\
y_{s}^{[n-1]}
\end{array}\right], \mathrm{n}=1,2, \cdots, \mathrm{~N},
$$

where

$$
A=\left[\begin{array}{cc}
0 & 0 \\
A & B
\end{array}\right], \quad U=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \psi & c-\psi
\end{array}\right], \quad B=\left[\begin{array}{cc}
A & B \\
0 & 0 \\
V^{T} & \omega^{T}
\end{array}\right] \text {, and } \quad V=\left[\begin{array}{ccc}
I & \psi & c-\psi \\
0 & 0 & I \\
0 & 0 & I-\theta
\end{array}\right]
$$

where \mathbf{r} denotes quantities as output from each step and input to the next step and \mathbf{s} denotes stage values used in the computation of the step $Y_{1}, Y_{2}, \ldots, Y_{s}$. The coefficients of these matrices, $\mathrm{A}, \mathrm{U}, \mathrm{B}$ and V indicate the relationship between the various numerical quantities that arise
in the computation of stability regions. The elements of the matrices $\mathrm{A}, \mathrm{U}, \mathrm{B}$ and V are substituted into the stability matrix. Applying (15) to the test equation $y^{\prime}=\lambda^{2} y, x \geq 0$ and $\lambda \in \not \subset$ leads to the recurrent equation:

$$
y^{[n-1]}=M(z) y^{[n]}, n=1,2,3, \ldots, N-1, z=\lambda h
$$

where the stability matrix

$$
M(z)=V+z B(1-z A)^{-1} U
$$

and the stability polynomial of the method can easily be obtained as follows:

$$
\rho(\eta, z)=\operatorname{det}(\eta I-M(z))
$$

The absolute stability region of the method is defined as $\mathfrak{R}=x \in \not \subset: \rho(\eta, z)=1 \Rightarrow|\eta| \leq 1$.
Computing the stability functions gives the stability polynomial of the method as:

$$
\begin{align*}
& \bar{h}(\omega)=-h^{4}\left(\frac{1}{1280} \omega^{3}-\frac{1}{1280} \omega^{4}\right)-h^{3}\left(\frac{5}{384} \omega^{4}+\frac{5}{384} \omega^{3}\right) \tag{16}\\
& -h^{2}\left(\frac{7}{64} \omega^{3}-\frac{7}{64} \omega^{4}\right)-h\left(\frac{1}{2} \omega^{4}+\frac{1}{2} \omega^{3}\right)+\omega^{4}-\omega^{3}
\end{align*}
$$

The stability polynomial (16) is plotted to produce the required graph
of the absolute stability region of the method as displayed in the figure 1.

TETFUND/UNIMUBI/ARJ/3

Figure.1: Stability region of the implicit one-step Runge-kutta collocation method.

Numerical Experiments

The new method shall be tested on some set of stiff differential equations and compared the obtained results side by side in tables. The numerical results were obtained using MATLAB software.

Problem 1
A certain radioactive substance is known to decay at the rate
$\frac{d N}{d t}=\alpha N, \alpha=-0.0026, N(0)=100, t \in[0,1]$

Where N represents the mass of the substance at any time t and α is a constant which specifies the rate at which this particular substance
proportional to the amount present. A block of this substance having a mass of 100 g originally is observed. After 40hours, its mass reduced to 90 g . Test for the consistency of the method on this problem for $t \in[0,1]$.
This stiff problem is modeled by the differential equation:
$N(t)=100 e^{-0.0026 t}$

This problem was also solved by Sunday (2011), where they proposed on Adomian decomposition method for numerical solution of ODEs
arising from the natural laws of growth and decay. Result to this problem is shown in table 1.

Table 1: comparison of the exact solution with the approximation/computed solution of problem (1)

t	Exact result	Computed result	Absolute Errors	Time/s
0.10	99.9740033797	99.9740033797	$0.000 \mathrm{E}+00$	0.0191
0.20	99.9480135177	99.9480135177	$0.000 \mathrm{E}+00$	0.0232
0.30	99.9220304121	99.9220304121	$0.000 \mathrm{E}+00$	0.0272
0.40	99.8960540613	99.8960540613	$0.000 \mathrm{E}+00$	0.0314
0.50	99.8700844634	99.8700844634	$0.000 \mathrm{E}+00$	0.0349
0.60	99.8441216168	99.8441216168	$0.000 \mathrm{E}+00$	0.0389
0.70	99.8181655196	99.8181655196	$0.000 \mathrm{E}+00$	0.0435
0.80	99.7922161701	99.7922161701	$0.000 \mathrm{E}+00$	0.0475
0.90	99.7662735666	99.7662735666	$0.000 \mathrm{E}+00$	0.0521
1.00	99.7403377073	99.7403377073	$0.000 \mathrm{E}+00$	0.0562

Problem 2

Consider the stiff initial value problem

$$
\begin{equation*}
y^{\prime}=5 y, y_{0}=1 \tag{19}
\end{equation*}
$$

With the exact solution

$$
\begin{equation*}
y(x)=e^{5 x} \tag{20}
\end{equation*}
$$

Table 2: Comparison of exact solution with approximate solution of problem (2), $\mathrm{h}=0.01$

x	Exact result	Computed result	Absolute Errors	Time/s
0.00	1.000000000	1.000000000	$0.000 \mathrm{E}+00$	0.0822
0.01	1.051271096	1.051271096	$0.000 \mathrm{E}+00$	0.1090
0.02	1.105170918	1.105170917	$1.000 \mathrm{E}-09$	0.1098
0.03	1.161834243	1.161834244	$1.000 \mathrm{E}-09$	0.1106
0.04	1.221402758	1.221402758	$0.000 \mathrm{E}+00$	0.1124
0.05	1.284025417	1.284025418	$1.000 \mathrm{E}-09$	0.1132
0.06	1.349858808	1.349858808	$0.000 \mathrm{E}+00$	0.1141
0.07	1.419067549	1.419067551	$2.000 \mathrm{E}-09$	0.1151
0.08	1.491824698	1.491824700	$2.000 \mathrm{E}-09$	0.1162
0.09	1.568312185	1.568312188	$3.000 \mathrm{E}-09$	0.1171
0.10	1.648721271	1.648721273	$2.000 \mathrm{E}-09$	0.1183

CONCLUSION

In this paper we have studied the class of one-step implicit Rungekutta collocation methods suitable for the approximate numerical integration of first order ordinary differential equations. We obtained uniformly accurate order five method at the step points as well as at some selected off-step points. In this way acceptable stability for stiff problems is obtained as for the Runge-kutta methods. All the derived methods obtained through this approach performed very well in stiff and initial value problem of first order ordinary differential equations.

REFERENCES

Adesanya, A. O, Udoh, M. O., Ajileye, A. M. (2013). A new hybrid method for the solution of general third-order initial value problems of ODE's. International Journal of Pure and Applied Mathematics. 86(2); 37-48.
Butcher, J. C. (2003). Numerical Methods for Ordinary Differential Equations. New York; John Wiley and Sons.
Butcher, J. C. (2005). General Linear Methods SANUM Stellenbosch, 1-58.
Butcher, J. C. (2008). Numerical Method for ordinary differential equations. $2^{\text {nd }}$ ed. New York; John Wiley \& Sons P. 213
Burrage, K. Butcher, J. C. (2001). Stability criteria for implicit Range-kutta methods. SIAM J Numer. Anal 179 (16); 46-57.
Chollom, J. and Jackiewicz, Z. (2003). Construction of two-step Runge-kutta methods with large regions of absolute stability,

Journal of comp. and applied mathematics 157; 125-137.
Chollom, J. P. and J. Z. Donald (2009). L-Stable Block Hybrid Adams Moulton Methods for the parallel solutions of ordinary differential equations, Global Jour. Of Math. \& Stat. 1(1); 3339.

Yakubu, D. G. (2003). Some new implicit Runge-katta methods from collection initial value problem in ordinary different equations. Unpublished PhD . Thesis, Abubakar Tafawa Balewa Uniiversity, Bauchi, Nigeria. 65-70.
Euler, L. (1913). Deintergration Acquationum Differentiation per Approximationem. In Opera Omnia, 1st Series, II, Institutions Calculi Integration, Teubner, Leipzig and Berlin; 423-434.
Jain M. K., Iyengar S. R. K. and Jain, R. K. (2007). Numerical methods for scientific and engineering computation. ($5^{\text {th }}$ edition). New Delhi; New age international (P) limited publishers.
Villadsen, J. and Michelsen, M. L. (1987) Solution of Differential Equations models by polynomial approximations. New Jersey; Prentice-Hall Inc Englewood Cliffs, 112.
Lie, I. and Nosett, S. P. (1989). Super-Convergence For Multistep Collocation, Math. Comp. 5265-5280.
Onumanyi, P., Awoyemi, D. O., Jaw, S. N. and Sirisena, U. W. (1994). New Linear Multi-step Methods with Continuous Coefficients for First Order

Initial Value Problems, Journal of the Nigerian Mathematical Society, 13; 37-51.
Sunday J. (2011). On Adomering decomposition methods for numerical solution of ODE's origin from the natural laws of growth and decay. The pacific Journal of science and Technology, 12(1); 237-243.

