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Abstract 

It is a known fact that systems of nonlinear ordinary differential equations have been known to be tedious to solve. In 

fact, some of the systems of nonlinear differential equations do not have closed form (exact) solutions. In view of the 

foregoing, this research is motivated by the need to derive a hybrid block method within a three-step integration 

interval  3, nn xx  for the solution of nonlinear system of equations. The formulation of the method was carried out 

via interpolation and collocation technique. The power series polynomial was adopted as basis function in deriving 

the method. Three off-grid points were carefully inserted within the three-step interval in order to guarantee a zero-

stable method. The basic properties of the method were further analyzed. The results obtained showed that the method 

performed better than the ones results were compared with. The method is also efficient and computationally reliable.  
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Introduction 

It is a known fact that nonlinear systems of differential 

equations find applications in various fields of human 

endeavor. This is because they are used to model 

different phenomenon in our today’s world. Such 

equations appear not only in the physical sciences, but 

also in biology, engineering, management sciences, 

and all scientific disciplines that attempt to understand 

the world in which we live. It is also important to state 

that many of these equations that govern the physical 

world have no solution in closed form. Therefore, to 

find the answer to questions about the world in which 

we live, we must resort to solving these equations 

numerically.  

 

In this paper, a hybrid block method is formulated for 

the solution of nonlinear first order systems of the 

form, 

0 0'( ) ( , ), ( )y x f x y y x y     (1) 

where 
2

0: ; ,q q qf y y   , and q  is 

the dimension of the system. The function ( , )f x y  is 

assumed to satisfy the Lipschitz condition stated in the 

Theorem 1. 

 

Theorem 1 (Henrici, 1962) 

Let ),( yxf  be a function, defined and continuous 

for all points ),( yx  in the region D  defined by 

),  ybxa , a  and b  finite, and let 

there exist a constant L  such that, for every 
*,, yyx

such that ),( yx  and ),( *yxf  are both in D , 

**),(),( yyLyxfyxf              (2) 

 

Then, if   is any given number, there exists a unique 

solution )(xy  of the initial value problem (1), where 

)(xy  is continuous and differentiable for all ),( yx  

in D . The requirement (2) is known as a Lipschitz 

condition and the constant L as a Lipschitz constant.  

 

Over the years, quite a number of researchers have 

proposed methods for solving nonlinear systems of the 
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form (1).  These authors include Akinfenwa et al. 

(2020),  Adesanya et al. (2018), Rufai et al. (2016), 

Adesanya et al. (2017), Ogunniran et al. (2020), 

Yakubu and Markus (2016), Akinnukawe and Muka 

(2020), Sunday et al. (2022), Kwari et al. (2023), 

among others. It is also important to give credit to 

researchers like Lambert (1973, 1991) and Fatunla 

(1980) who laid the foundation for deriving block 

methods for the solutions of differential equations of 

the form (1). 

 

However, it is important to state that some of these 

methods have some setbacks ranging from large 

number of function evaluations, small 

convergence/implementation region to low order of 

accuracy. In view of these setbacks, this research is 

motivated by the need to address some of these 

setbacks by formulating a hybrid block method for the 

solution nonlinear systems of differential equations of 

the form (1).  

 

The proposed method will address some of these 

setbacks by deriving a method that is capable of 

generating simultaneous numerical approximations at 

different grid points within the interval of integration. 

This advantage will enhance the accuracy of the 

method. Another advantage of the method is that it is 

less expensive in terms of the number of function 

evaluations compared to the conventional linear 

multistep and the Runge-Kutta methods. It also 

preserves the traditional advantage of one-step 

methods of being self-starting and permitting easy 

change of step-size during integration. 

 

Some existing methods like predictor-corrector 

methods as well as hybrid block method also cater for 

some of the setbacks mentioned above. See the works 

of Yashkun and Aziz (2019), Adeyefa and Omole 

(2022), Soomro et al. (2022), among others. 

 

The paper is structured as follows. In Section 2, the 

formulation of the method was presented. In the third 

section, the method was analyzed while in Section 4, 

numerical examples and discussion of results were 

presented. Conclusions were drawn in the fifth section. 

 

Formulation of the Hybrid Block Method 

Let the approximate solution to (1) be given by the following power series of degree 7 
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Differentiating equation (3) gives the expression 
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Substituting (4) into (1) gives, 
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321 765432),( xaxaxaxaxaxaayxf      (5) 

Now, interpolating (3) at point 
2

5
,  sx sn  and collocating (5) at points 3,

2

5
,2,

2

3
,1,

2

1
,0,  rx rn , leads to a 

system of nonlinear equation of the form  

XA U              (6) 

where            

 TaaaaaaaaA 76543210 ,    
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Note that s  and r  are interpolation and collocation 

points respectively. Solving the system of nonlinear 

equation (6) by Gauss elimination method for the 

7)1(0,' jsa j and substituting back into the 

power series (3) basis function gives a three-step 

hybrid block method as, 
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and t  is given by  

nx x
t

h


                                                                                                                        (9) 

Evaluating (7) at 3,
2

5
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Analysis of the Method 

Some basic properties of the newly formulated method 

shall be analyzed in this section. These properties 

include order, error constant, consistency, zero-

stability and region of absolute stability. 

 

Order and Error Constant of the Method  

Definition 1: Order of a Block Method (Fatunla, 

1988) 

Let ( )y x  be sufficiently differentiable, then the terms 

in a block method can be written as a Taylor series 

expansion about the point x  as 
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where the constant coefficients , 0,1, 2,...pc p   are given by; 
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The method and its associated linear difference 

operators are said to have order p  if 

10 1 2 ... 0 0ppc c c c and c       . The 

order is also defined as the largest positive real number 

p  that quantifies the rate of convergence of a 

numerical approximation of a differential equation to 

that of the exact solution. 

 

Definition 2: Error Constant (Fatunla, 1988) 

The term 1pc  is called the error constant and implies 

that the local truncation error is given by, 
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On the application of (12) on the newly formulated 

three-step hybrid block method (10), the expression 
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                                                          (14) 
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Therefore,  

 0 1 2 3 4 5 6 7

0

0

0

0

0

0

c c c c c c c c

 
 
 
 

         
 
 
 
 

                                                           (15) 

This implies that three-step hybrid block method  is of the seventh order. That is,  

  Tp 777777          (16) 

The error constant is given by   

5

5

5

8
5

5

5

4.4404 10

3.3069 10

3.9237 10

3.3069 10

4.4404 10

1.2556 10

T

c













 
 

 
 
 
 
 

 
 
  

            (17) 

 

Consistency of the Method 

Definition 3: Consistency (Lambert, 1973) 

A continuous linear multistep method is said to be 

consistent if its order 1p  .
 

Therefore, the method (10) is consistent since it has 

order 1p  .  

Zero-Stability of the Method 

Definition 4: Zero-Stability (Fatunla, 1988) 

A continuous block method is said to be zero-stable if 

the roots , 1,2,...,sz s n of the first characteristic 

polynomial denoted by ( )z  satisfies 1sz   and 

every root with 1sz   has multiplicity not exceeding 

the order of the differential equation as 0h . The 

main consequence of zero-stability is to control the 

propagation of the error as the integration proceeds.  

Applying Definition 4 on the method (10), the first 

characteristic polynomial is given by,  

 

 

1 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1
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0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 1

z z

   
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   
   

    
   
   
   
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Thus, solving for z in  

 
5( 1) 0z z                                                                                                                       (18) 

gives 1 2 3 4 5 60 1z z z z z and z      . Hence, the hybrid block method (10) is zero-stable. 

 

Convergence of the Method 

Theorem 2 (Dahlquist, 1963) 

The necessary and sufficient conditions for a linear 

multistep method to be convergent are that it be 

consistent and zero-stable. 

 

The hybrid block method (10) is therefore convergent 

since it is consistent and zero-stable. See Theorem 2. 

 

1.1.  Region of Absolute Stability of the Method  

Applying the boundary locus method, we obtain the 

stability polynomial for the hybrid block method (10) 

as, 
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The region of absolute stability of the hybrid block method is shown in Figure 1.                                                                                  

 
Figure 1:  Stability region of the hybrid block method 
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The region of absolute stability of the hybrid block 

method is ( )A  -stable . Note that the stability 

region is the interior of the blue-coloured contour in 

Figure 1. 

Results 

Numerical Examples 

The newly formulated hybrid block method will be 

applied in solving some nonlinear systems of 

equations of the form (1). This is aimed at testing the 

reliability of the new method. The following notations 

shall be used in the tables below: 

 

h : step-size 

HBM: Newly derived hybrid block method in equation (10) 

 

Problem 1 

Consider the nonlinear system, 

1 1 2 1

2 1 2 2

' 2 2sin , (0) 2

' 998 999 999(cos sin ), (0) 3

y y y x y

y y y x x y

     


     
                                                   (20) 

whose exact solution is given by, 

 
1

2

( ) 2 sin

( ) 2 cos

x

x

y x e x

y x e x





  


  

                                                                    (21) 

This system was solved by Akinnukawe et al. (2020) at the end point 10x  .  

 

Problem 2 

Consider the well-known nonlinear two-dimensional Kaps system 

2

1 1 2 1

2 1 2 2 2

' 1002 1000 , (0) 1

' ( ) ( )(1 ( )), (0) 1

y y y y

y y x y x y x y

    


    
                                                                (22) 

defined in the range 0 20x  , whose exact solution is given by 

 

2

1

2

( )

( )

x

x

y x e

y x e





 


 

                                                                                                (23) 

Akinfenwa et al. (2020) solved this problem.  

 

Problem 3 

Consider the nonlinear Van der Pol system 

 
1 2 1

2

2 1 1 2 2

' , (0) 2

' 1 , (0) 0

y y y

y y y y y

  


     

                                                                                            (24) 

 

defined for  0,70x . This equation which is stiff 

in nature does not have a closed form solution. The 

Van der Pol equation replicates many phenomena in 

neurology, physics, biology, electronics and so on, 

Sunday et al. (2022). The system also serves as model 

in seismology, Cartwright (1999). The solution to (24) 

shall be computed at selected values of 5  . 
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Problem 4 

Consider the nonlinear chaotic Lorenz system 

 1 2 1 1

2 1 3 1 2 2

3 1 2 3 3

' , (0) 1

' , (0) 5

' , (0) 10

y y y y

y y y y y y

y y y y y







  


     
   

        (25) 

 

where the parameters ,   and   (all greater than 

zero) are proportional to the Prandtl number, Rayleigh 

number and some physical proportions of the region 

under consideration respectively. Equation (25) will 

be defined over  0,30x  with 10, 28    

and 8/ 3   as considered by Lorenz (1963).  

 

Discussion  

The results presented in Table 1 clearly showed that 

the newly derived method performed better than the L-

stable hybrid block method derived by Akinnukawe et 

al. (2020) at different values of the step-size. The 

method was further applied in solving the popular two-

dimensional Kaps system in equation (22). From 

Table 2, it is obvious that the newly formulated 

method performed better than the seventh-order 

hybrid block method developed by Akinfenwa et al. 

(2020).  

 

To further buttress the efficiency and accuracy of the 

hybrid block method derived, it was applied on some 

nonlinear systems that do not have exact solutions. 

That is, the Van der Pol and Lorenz systems. In such 

cases, the results obtained were compared with that of 

the inbuilt MATLAB solver (ode15s). Table 3 

juxtaposes the numerical solution of the newly derived 

method and that of ode15s. The results from the table 

clearly show that the approximate solution of the new 

method (HBM) is in agreement with that of the 

ode15s. 

 

Table 1. Comparison of absolute errors in HBM with that of Akinnukawe et al. (2020) for Problem 1 

_____________________________________________________________________________________________ 

h    iy                 Error in HBM                                 Error in Akinnukawe et al. (2020) 

_____________________________________________________________________________________________ 

0.25  1y           
181.19840 10    

144.50751 10  

 2y            
181.87291 10            

144.84057 10   

0.5  1y           
186.90917 10    

149.85878 10   

 2y            
186.18920 10            

149.81437 10  

1.0        1y           
164.90162 10    

149.45910 10   

  2y            
164.87265 10            

149.54792 10  

2.0   1y           
166.00932 10    

131.68310 10   

  2y            
166.12635 10            

131.68365 10  

4.0  1y           
152.78291 10    

132.21378 10   

  2y            
152.67432 10            

132.23044 10  

6.0         1y           
154.78210 10    

131.01363 10   
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  2y            
154.98201 10            

131.01474 10  

8.0   1y           
142.00216 10    

131.93401 10   

  2y            
142.12562 10            

131.94650 10  

10.0  1y           
145.72863 10    

136.10623 10   

  2y            
145.65715 10            

136.09068 10   

___________________________________________________________________________________________ 

 

 

Table 2. Comparison of the absolute errors in HBM with that of Akinfenwa et al. (2020) for Problem 2 

_____________________________________________________________________________________________ 

h          N         iy                   Error in HBM      Error in Akinfenwa et al. (2020) 

_____________________________________________________________________________________________ 

2.5        4          1y           
165.3190 10     

092.1670 10    

                   2y            
125.9021 10            

051.3507 10   

1.25        8          1y           
162.1902 10     

092.3329 10    

           2y            
122.0192 10            

052.8914 10  

0.83333      12         1y           
173.0192 10     

092.3078 10    

           2y            
134.1028 10            

052.9695 10  

0.625        16        1y           
184.2617 10     

092.2987 10    

                   2y            
144.9201 10            

052.9986 10  

0.5        20        1y           
181.1728 10     

092.2948 10    

                   2y            
141.2781 10            

053.0115 10   

____________________________________________________________________________________________ 
 

Table 3. Comparison of approximate solutions of Problem 3 using between HBM and ode15s at 0.1h   

___________________________________________________________________ 
𝑥   𝑦𝑖                HBM                ode15s    

___________________________________________________________________ 

1      𝑦1        −1.8650950811        −1.8650950571  

𝑦2           0.7524845612                     0.7524845299 

___________________________________________________________________ 

5      𝑦1         1.8985234702               1.8985234421   

𝑦2      −0.7289532600          −0.7289532451 
___________________________________________________________________ 

10      𝑦1         1.7865365388                 1.7865365103     

𝑦2      −0.8156276799          −0.8156276438 

___________________________________________________________________ 

 20      𝑦1         1.5075643401                          1.5075643177       

𝑦2      −1.1911230101          −1.1911230003                  

___________________________________________________________________ 
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Figure 2 shows the solution curves of the Van der Pol 

system in equation (24). The newly derived method 

was used to solve the system. From the solution curve, 

it is obvious that the solution of the newly derived 

method converge to that of the Matlab inbuilt solver 

(ode15s). This clearly shows that the method is 

computationally reliable. 

 

 

Figure 2: Solution curves for Problem 3 at 5   

 

Figures 3-5 show the solution curves for the 1y , 2y  

and 3y components of the Lorenz system in equation 

(25). It is obvious from the three figures that the 

solution curves obtained using the newly derived 

method (HBM) converges to that of the ode15s. This 

implies that the method is computationally accurate 

and efficient. 

 

 

Figure 3: Solution curves of Problem 4 for 1y  component 
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Figure 4:  Solution curves of Problem 4 for 2y  component 

 

Figure 5.: Solution curves of Problem 4 for 3y  component 

 

Conclusions 

A hybrid block method has been formulated in this 

research for the solution of nonlinear systems of 

differential equations of the form (1). The paper 

further analyzes the basic properties of the method and 

found out that it is consistent, convergence and zero-

stable. The results obtained on the application of the 

method of problems of the form (1) further showed 

that the method is computationally reliable. 
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